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Abstract

Positive definite integral quadratic lattices(or the associated quadratic
forms) have been investigated from various points of views, one of which
is a system of generators with some specified lengths. In this paper we will
find all lattices(over real quadratic integers) which are generated by some

vectors the norms of lengths of which are 2 or 3.

0. Introduction

Recall 2-lattices. Let F' be a totally real algebraic field and o be the ring of inte-
gers in F' . Let V be a totally positive definite quadratic space over F with sym-
metric bilinear form B and the associated quadratic form Q. A vector x in V is
called a g-vector if Q(x) = g. A lattice L, a finitely generated o-module in V', is
said to be integral if B(L, L)C o. It is clear that Q(L) C o if L is integral. An inte-
gral lattice L in V' is called a g -lattice if it is generated by some g-vectors over o.

Note that any 1-lattce is isometric to a unit lattice whose matrix is the identity
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matrix. Every 2-lattice is even. When F' is the rational number field @, every in-
decomposable 2-lattice falls in one of the three infinite sequences or the excep-
tional set consisting of three lattices E6, E7 and E8 [1,2]. It is well known that
Leech lattice is a 4-lattice. When F' is a real quadratic field, every indecompos-
able 2-lattices falls in one of four infinite sequences or the exceptional set con-
sisting of five lattices [2]. Also see [3] for 2-lattices in an hermitian space over an
imaginary quadratic field. In this case there are 2-lattices which is not a free o-
module.

From now on we suppose that ¢ =2, 3 and F = Q(v/m) is a real quadratic field
with a square-free integer m > 1. We denote the conjugate of a number a € F by
a, and define the norm of @ by N(a) = aa and the trace of a by tr(a) = a + @.
Note that N(«) and tr(«) are rational integers for any ¢ € 0. A number ¢ € F is
sald to be totally positive, and written as a > 0, if a > 0 and @ > 0. Let # be the
unit group of 0, and put

Ftr={acF la>0},0"=0onF",u" =unkF".
Note that a8, e + € F* if a, 8 € F*. Let & be the fundamental unit > 1. Then
u* is generated by the unit €;, where €; = €0 or €1 = € according as N(&¢)=1 or -1.
A totally positive integer « is said to be irreducible if @ cannot be expressed as «

=1 +az with a1, a2 €0+

Lemma 0. 1. Let a € 0*. Then tr(a) = 2, and the equality holds if and only if «
=1. And if N(a) < 3, then « s irreducible.

Proof. If tr(a) = 1, then we have 0 <« =(1 + ky/m ) / 2 with some rational odd
integer £ and » = 1 (mod 4). This is a contradiction. If tr(a) = 2, then we have 0
<a =1+ k+/m with some rational integer k. Thus £ = 0 or « = 1. Suppose that «

=a1 +a with a1, az € 0.
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Then we have
3= N(a) = N(a1) + N(az) +tr(aioz) = 1 +1+2 =4,

which is a contradiction. [}

By M, we denote the set of square-free rational integers m (>1) for which
there is a totally positive integer a such that N(a) = ¢ in F = @(y/m). Then the
ideal(g) can be written as (¢) = gqq with @ = («) in F. We have two cases: g = q
and g # q. We define the subset M,;' (resp. M?) of M, for which ¢ = g (resp. q #
q). Clearly the following statements hold: If m € M}, then m = 2, 3 (mod 4). If
m e M thenm = 1 (mod 8). If m € M}, thenm = 0 (mod 3). If m € M, then
m =1 (mod 3). Form € M, we put

Ty =min{a€o* | N(a)=q,a >a )
Remark 0. 1. By a simple computation we have the following:

M} =(2,7, 14,23, 31, 34, 46, 47,62, 71, 79, 94, 103, 119, 127, . ..}

M7 ={17,41, 73,89, 97,113, 137, 161, 193, 217, 233, 241, 281, .. .}

M} = {6, 33,69, 78, 141, 177, 213, 222, 249, 321, 366, 393, 429, . . .}

M? ={13, 22,37, 46, 61, 73,94, 97, 109, 118, 157, 166, 181, 193, . . . }
Lemma 0. 2. [f « €07 with N(a)=q, then a = €1, or a = €7 with v € & If
m € ML then n, = Tye1. Moreover, if m € M} and m > 2 then €1 = &o.
Proof. Clearly we can write o = €\ny or a = €y with v € 2. If m € M}, then we
see that n, / T, = €] for some positive rational integer ». If >1,we put 7y = w,&;!
and see that y — 7 = 7,&, (67 2—1)=>0. This contradicts the minimality of «,. If &
= &5, then we have ©, = T,€j. Thus we see that n} = g&f, which implies /g € F or

m =q.By Remark 0.1 we have m =g=2.[]
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1. Ng -lattices

Let ¢ be a positive rational integer. A vector x € V is called an Ng-vector if
N(Q(x)) = g .Let L be an integral lattice L in a totally positive definite quadratic
space V' over F. L is called an Ng-lattice if L is generated by a finite number of
Ng-vectors. In this paper we will treat Ng -lattices forq = 2, 3.

We say that a lattice L is indecomposable if there are no sublattices L, and L,
sothat L =L, 1 L, (thatis, L = L, + L, as o-modules and B(L, , L, )={0}). Clearly

every lattice is the orthogonal sum of some indecomposable sublattices.

Lemmal. 1. Every lattice L has the unique orthogonal splitting L = L, 1 L, |
o1 L, (but for their oder).
See [4, Theorem 105:1].

Propositionl. 1. et g =1, 2, 3, cmd assume that an integral lattice L is the or-
thogonal sum of two sublattices L, and L,. Then L is an Ng-lattice if and
only if L, ©s an Ng-lattice for i =1, 2.

Proof. Clearly L is an Ng-lattice if I, and L, are Ng-lattices. So we shall show
that L, is an Ng-lattce if L is so. Let x € L be an Ng-vector, and suppose r =y +
z withy € L, and z € L, .Then we have Q(x)=Q(y)+Q(2), which implies that
Q(y) =0 or Q(z) =0 from Lemma 0. 1. Thus we have ¥y = 0 or z = 0 because Q is
a totally positive quadratic form. Hence we can assume that L has a system of
generators {x, , ..., Zv , Lri1, ..., Tu} With X, , ..., & € L, and 2,41, ..., Tw € L, . Now
take a vector x € L, . Then we can write x = X, _ a; x;, + X, a; x; with «, €0,

1 j>r 7y

1 <k<m. Hence we can see that x — X,_a;x; =X, o, x;€ L, nL, = {0}, or

that x = X, _,«, x; . Therefore L, is an Ng-lattice. [ ]

By Proposition 1. 1 we have only to find all indecomposable Ng-lattices. If a
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lattice L is a free o-module, then we can write L = ox, + ox, + *** + ox, with line-
arly independent vectors x; ’s in V' . Then we define the discriminant disc(L) of
L by the determinant of the matrix the (¢, 7)-entry of which is B(x; , x; ). This
value is independent of the choice of x; ’s up to squares of units. We say that an
integral lattice L is unimodular if disc (L) € u.
Lemma 1. 2. [f M is a unimodular sublattice of an integral lattice L, then M
splits L.

See [4, Proposition 82: 15].

Letx,,..,xn €V .By<x,... xx>wemean the o-module generated by x, , . .
o Im. When L = <x,, ..., xn> we write L = A, where A is the matrix the (7, 7)-
entry of which is B(x; , x; ). Note that det (A) > 0 or det (A) = 0. The latter case
occurs only when x, , . . ., X, are linearly dependent over F'. Suppose that L is an
Ng -lattice generated by Ng-vectors x, , . . ., x,. We say that {x, , .. ., 2, } is a mini-
mal Ng-system for L if L has no Ng-system which consists of # — 1 vectors.
Here we note that vectors x, , . . ., » are not always linearly independent.
Proposition 1. 2. Assume that L is an indecomposable N q-lattice with a mini-
mal Nq-system {x,, ..., X, }. Then there is a_permutam'on pofi{xy,...,njso
that the sublattices <x,,, . . ., X,,> are indecomposable N q-latlices with
minimal N q-systems {x,, . . ., Xy fJorr=1,..., n
Proof. Consider a graph G the vertex set of which is {x,, . . ., . } where two ver-
tices x; and x; are adjacent if and only if B(x; , x; ) # 0. Then G is connected
since L is indecomposable. By an easy argument in graph theory, we can elimi-
nate a vertex x, from G so that the subgraph G —{x, } is connected, which means
that the sublattice <x, , . . ., Xr-1, Zr 11, . . ., Xr > IS indecomposable since x; ’s are

" not the sum of two nonzero vectors in L . []

Remark 1. 1. Let L be an indecomposable N 1-lattice. Then L is isometric to
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[1]4f €, = €5. On the other hand, L s isometric to [1] or [g,] 1€, =¢&,.

2. N2-lattices

Let L be an N2-lattice with a minimal N2-system {x, , .. ., 2, }. Write 7 =7, and
g = (). We can easily see the following proposition.
Proposition 2. 1. Suppose n = 1. Then L 1is isometric to [, P]ﬁm,‘ Ji, or 7171:
Jw=r) Jo= 7} )y = a7l Jo, = (6]
All isomiric relations are:
Jio= 71,0 — = 71,1 — m =2,
Jio=Jiy = 71,03“’ 71,1 — & =&,
Jo=Ju &= J= ], < meM,}.

Now suppose # = 2. Then we have

a A
L=<z ,x,>= ,
L 4

where a, B €o* withN(a) =N(B)=2and 0# 1€o. Putd =af — A%. Then o >0
ord =0.Ifd =0, then we have («) = (8) = (1) =q or q and Q (ax, — ix,) =0
(that is, ax, — Axy = 0). Hence L = ox;, + ox, = ox, + Aa 'ox, = ox, . This is a con-
tradiction to the minimality of the N2-system {x;, x, }. Thus ¢ >0. We need the
following lemma.

Lemma2 1. Lety =7, +r,withy, , 7, €0 . If NG)=4dtheny, =71, €u*.
Proof We have 4 = N(7,) + N(7,) + tr(r,7,) with N(7,) = 1, N(7,) = 1 and
tr(y,7,) >2. Hence all the equalities and 71 E = 1 should hold. []

Applying Lemma 2. 1 to a8 = 2+ 0 we see that § = 22 €u™, and af =24%. Re-

placing % by Ax,, wehave § =@, A= 1,andd = 1. We can assume @« =7 or a =

NI | -El ectronic Library Service



Kobe Pharmaceutical University

€, 7 by using a minimal N2-system {yx, , 7z, } or {yx, , Hx, } with some » € u if nec-
essary. By Lemma 0.2 we have

Proposition 2. 2. Suppose n =2 and m € M, . Then L s isometric to [, 0r Jy1:

T 1 an 1
Soo® {1 ﬁ}’ Sua = { 1 sl—n}

where disc(/,) = disc(f,)) = 1. And [,y = [, if and only if m € M} or e = €2,
Proof. We have only to show that f,, does not represent eix if m € M7 and N(&o)
= 1. If n&* + 2&y + 7p* = exxw for some &, y € 0, then we have £ # 0, 7 # 0 and £% +
(¢ + Ty )2 = 2e1. Hence, by Lemma 2.1, we see that &2 = ¢;, which is a contradic-
tion. []

Theorem 2. 1. All indecomposable N2-lattices are given in Propositions 2.1

and 2.2.

Proof This is a consequence from Lemma 1.2, Proposition 1.2 and the fact that

the lattices in Proposition 2.2 are unimodular. [_]

3. N3-lattices

Let L be an N3-lattice with a minimal N3-system {x1, . . ., x»}. Write © = 73 and
g = (7). We can easily see the following proposition.
Proposition 3.1. Suppose n =1. Then L is isometric to Kig, Ko, Ki1, or K11:
Kio= [r], K1o= (7], Kia= [e17), or K11 = [e17],
and Kio= Ko, K1 = Ki:1. All isometric relation are:
Kio= K1 <= Kio= K11 <= & =¢€2,
Ko=Ki1 < Kio= K, <= m M},

Now suppose # = 2. Then we have

NI | -El ectronic Library Service



Kobe Pharmaceutical University

a A
L = <X, L2> = ,
L ﬁ}

wherea, B o™ with N(a) =N(8)=3and 0# A€0. Putdo =af — 4%2. Thend > 0
ord =0.1f6 =0, then we have () = (8) = (1) =q or g and Qx> — Ax1) =0
(that is, ax: — Ax:1 = 0). Hence L = ox1 + ox: = ox1 + Aa'ox1 = ox1. This is a con-
tradiction to the minimality of the N3-system {x:, x2}. Thus  >0. We need the
following lemma.

Lemma3. l.letmeMandy =71+ 72 with 7, 712€ 0. If N(7) = 9 and N(71)
> N(r2), then 72 € u and one of the following holds: (1)m = 13,11 = 7Y2 or T)s,
(2)r1 =272

Proof. We have 9 = N(71) + N(72) + tr(in72) with N(y1) > 1, N(y2) = 1, and ¢ =
tr(7172)=2. Hence 7172 = (¢t + k+/m) / 2 for some rational integer k with ¢t =k
(mod4), so N(71) N(G2) = (t:—k*m) / 4. Among all possible values of N(y1), N
(72) and t we have two cases (note that 5, 7T¢&Ms): () N(71) =3, N(2) =1, 17z =
(56+4v/13) /2 and (i) N(71) =2, N(72) = 1, 7172 = 2. [

Applying Lemma 3.1 to the case a8 = 2 + ¢ with 42, 0 € 0™, we have the follow-
ing three cases:

(CKYm =13.2€u",0 =ni2 or A%, a8 = e1w* A% or E1? A%,

(CM)Yicut,d =24, 5 =0t

(CPYdcu, *=20,8=da0.

First consider the case (CK). Note that 7 + 1 = &:7% and (&) = (8). Since €=
gz, we may assume thata =7 or 7. If & =7, then 8 = €174 and ¢ = TA%. Hence L =
<Xi, X2> = <X1, €A ‘22> = Ko in Proposition 3.2. Similarly we have K> when a =
7. A simple computation shows that K> does not represent 7, so K» # K». In this
case we say that L is of type TK .

Secondly consider the case (CM). Note that (a) = (8). It can be easily seen
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that L is isometric to Mso or M2 in Proposition 3.2. A simple computation shows
that Mzo = Mz if and only if m € M3 or €1 = €2. In this case we say that L is of
type TM .

Finally consider the case (CP). We may assume § = €1 since m #2. Fix a p so
that p? = 2e1. Then we see that L is isometric to P in Proposition 3.2 or P (the
conjugate of /). And we see

Ps = <x1, X2> = <Ax1 — P&ids2, £ &1 (P11 — 7x2)>= Po.
Remark 3. 1. By M, we denote the set of m € Ms so that p* = 2&1 for some p €
QG/m). If m € M, then &1 =& and m = 6, 10(mod 12). We see
M, =1{6,22, 46, 94, 118, 166, 214, 262, 334, . . . }.
Proposition 3. 2. Suppose n= 2 and m € Ms. Then L is isometric to one of the

Jollowng:

E T

& — T & T
o &ar

Mo = {“ 1} Moy = Fl” _1_}
1 1 &

where p € o so that * =2¢e1. K: and K appear when m=13. P appears when
m € M, disc(K>) =&, disc(K»2) = &, disc(P) = &1, disc(Moo) = disc(Me) =2.
K> # Ko, Moo= Moy if and only if m € M or &1 = €2

Let » = 3 and {x1, x2, 23} be a minimal N3-system for an indecomposable N3-
lattice L. Then the lattices <xi, x;> are of type TK, TM or TD for 1<i <j <3,
where we say that a binary decomposable N3-lattice is of type TD . A case {712,
T3, 133} means that <x:, x;> is of type Tj; for 1<¢ < j <3. Clearly the cases {TM,
TM,TM} and {TK , TK , TM} do not appear.

1) Case (TK,TK,TK}. From (CK) we can assume that L is isometric to

NI | -El ectronic Library Service



Kobe Pharmaceutical University

T € Eo T €& &
Ki= |eo 7w 7y or Ks= |& T 7
€ 7 T & 1 T

where n = +&. Since disc(Kz) = €1 (1 + 2 (3 — €0)), we see that » = &. We see
that
E=<x1, X2, X3>=<TX1 + EoX2 + EoX3,E0X1 + TX2 + EoX3,E0X1 + EoX2 + Tx3>= K.

2) Case (ITM,TM ,TM , TK}. From (CM) and (CK) we can assume that L is iso-

metric to
T 1 1 T 1 1
A=11 7 »| o A= |1 7@ 7|,
1 » =« 1 v 7
where 5 = +¢&. Then disc (A) = —¢&o + 2%, which is not totally positive nor 0.

Thus this case does not occur.

3) Case {TK,TK,TD}. From(CK ) we can assume that L is isometric to

T & & T € &o
A= leo © O or A= |& 7 O ,
g 0 =« g 0 7

and their discriminants are —zgo or — €0, which are not totally positive nor 0.

4) Case (TM,TM,TD}. From (CM) we can assume that L is isometric to

T 1 1 T 1 1
Mso= {1 7© 0|, Mse= |1 =z 0],
1 0 7 1 0 «
e 11 e 11
M= |1 7w 0, Msi= |1 res O ,
1 0 T7& 1 0 =&

where disc (Mso)= 7, disc (M39) = &, disc (Ms1) = 7&1, disc (M31) = ner. If
m € M} and €1 = €, we see that any two of them are not isometric by considering
the discriminants. It can be easily seen that Mso = Ms; and Mso = Ms: if
m € M2 with €: = €2 and that Mso= M31 and Mso= Ms1if m € M.} .

5) Case (TK,TM ,TD}. From (CK) and (CM) we can assume that L is isometric
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to
T € 1 T & 1
A= g w© 0, A= g @ 0},
1 0 7 1 0

We note that A = <x1, X2, 3> = <1, X2, €01 — X2 —Eox3> = K3. Similarly A=K
=~ K.
From the above observation we have the following proposition:

Proposition 3. 3. Suppose n = 3 and m € Ms. Then L is isometric to one of the

Jollowing:
T & €& [ 1 1 7 1 1
Ks= |60 ®@ €|, M= 7z 0f, —MB,O'E 1 = 0},
€ € T« i 0O 7 1 0 =«
e 1 1 wer 1
Msy= |1 7 0|, Mau=|1 70 0
1 0 T&r 1 0 rer

Kz appears when m = 13. disc(K3) = &1, disc(Mso) = 7, disc(Ms0) = =, disc
(M3,1) = 7e1, disc(M3,1) = ne1. All isometric rvelations are:
Mso= Ms1 <= Mso= Ms, < m & M2 with & =€,
Mso= Ms1, <= Mso= M1 <> m € M,
Let n = 4 and {x1, Xz, X3, x4} be a minimal N3-system for an indecomposable

N3-lattice L. By Proposition 3.3 we may assume that L is isometric to

- — —

a 1 1 0 a 1 1 1 a 1 1 0 « 1 1 O
1 @ 0 0 1 @ 0 0 1 @ 0 1 1 @ 0 -1
1 0@ 1 |1 0@ o |1 0 @& 1" |1 0 @ 1/
001« (1 00 @ |01 1 « |0 -1 1 a]

with a € {7, @, né1, we1}. We delete the third lattice because of the discriminant =
—3. We also delete the second lattice since Q (@x:1 —x: —xs —x1) = 0 or X4 = Gx
— X2 — X3, which contradicts the minimality of the N3-system. We note that the

first lattice = <21, X2, I3, X4> = <x1, AXL — X2 — X3, X3, xa> = the fourth lattice.
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For the first lattice we may take &« =7 or w&1. We write them as Mo and My,

can see that Mo and My are isometric if and only if €1 = €3 by a simple computa-

tion.

Proposition 3. 4. Suppose n = 4 and m € Ms. Then L 1s isometric to one of the

ollowing: _ _ _
% g r 1 0 0 = 1 0 0
M4,o = 17 10 R M4,1 = 1 e i 0
0 1 = 1 0 1 7z&e 1

0 0 1 =7 0 0 1 7ed

where disc(Maio) = disc(Ms1) = 1. Muo = My if and only if €1 = €5,

Theorem 3. 1. All indecomposable N 3-lattices are given in Propositionss.1,
3.2 3.8 and 3.4.

Proof This is a consequence from Lemma 1. 2, Proposition 1. 2 and the fact that
the lattices in Proposition 3. 4 are unimodular. In fact, for N3-lattice L with a
minimal system {x, . . ., Z»}, we can assume that the system satisfies the prop-
erty in Proposition 1. 2. If n > 4, then we see that the lattice L’ = <x1, . . ., 4> is
unimodular by Proposition 3. 4. Hence we have L = L’ 1 L” for some lattice L”

by Lemma 1. 2, which contradicts the indecomposability of L. []
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