2位に硫黄官能基を有する 1,6-ジアザビシクロ[3.2.1]オクタン系 新規経口β-ラクタマーゼ阻害剤の創製

2022

藤生 基弘

Abbreviations

Ac	acetyl	E. coli	Escherichia coli
AVI	avibactam	EDC	1-ethyl-3-(3-dimethylaminopro- pyl)- carbodiimide
BLI	β-lactamase inhibitor	ESBL	extended-spectrum β -lactamase
Bn	benzyl	Et	ethyl
Boc	<i>tert</i> -butoxycarbonyl	EUCAST	European Committee on Antimi- crobial Susceptibility Testing
Bzh	benzhydryl	FDA	Food and Drug Administration
CAMHB	cation-adjusted Mueller Hinton broth	ⁱ Pr	isopropyl
CAZ	ceftazidime	K. pneu- moniae	Klebsiella pneumoniae
CFM	cefixime	LED	light-emitting diode
C. freundii	Citrobacter freundii	MBL	metallo-β-lactamase
CFU	colony forming unit	<i>m</i> -CPBA	<i>m</i> -chloroperoxybenzoic acid
CL	clearance	Me	methyl
CLSI	Clinical Laboratory Standards In- stitute	MHB	Mueller Hinton broth
CRAB	carbapenem-resistant Acinetbac- ter baumannii	MIC	minimum inhibitory concentra- tion
CRE	carbapenem-resistant <i>Enterobac-teriaceae</i>	MPC	minimum potentiating concentra- tion
CRPA	carbapenem-resistant Pseudo- monus aeruginosa	NAC	nacubactam
CSI	chlorosulfonyl isocyanate	NMR	nuclear magnetic resonance
CTB	ceftibuten	NOAEL	no observed adverse effect level
DABCO	1,4-diazabicyclo[2.2.2]octane	NOE	nuclear Overhauser effect
DBO	1,6-diazabicyclo[3.2.1]octane	NOESY	nuclear Overhauser effect spec- troscopy
DBU	1,8-diazabicyclo[5.4.0]undec-7- ene	PBP	penicillin-binding protein
DIAD	diisopropyl azodicarboxylate	Ph	phenyl
DMAP	4-dimethylaminopyridine	РК	pharmacokinetics
DMB	2,4-dimethoxybenzyl	PMB	<i>p</i> -methoxybenzyl
DMEAD	di-2-methoxyethyl azodicarbox- ylate	PNB	<i>p</i> -nitrobenzyl
DMF	N,N-dimethylformamide	Ру	2-pyridyl
dr	diastereomeric ratio	QD	quaque die
DUR	durlobactam	REL	relebactam
E. cloacae	Enterobacter cloacae	SAR	structure-activity relationship

SDS- PAGE	sodium dodecyl sulfate-poly- acrylamide gel electrophoresis
SFC	supercritical fluid chromatog- raphy
Su	succinimide
TASF	tris(dimethylamino)sulfonium difluorotrimethylsilicate
TBAF	tetra-n-butylammonium fluoride
TBS	tert-butyldimethylsilyl
^t Bu	<i>tert</i> -butyl
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TLC	thin-layer chromatography
TMS	trimethylsilyl
Ts	p-toluenesulfonyl
VAB	vaborbactam
WHO	World Health Organization
ZID	zidebactam

目 次

6 Lu - A		
緒論		1
第1節 薬剤耐性菌と	β-ラクタマーゼ	1
第1項 抗生物質と	薬剤耐性菌	1
第2項 細菌の構造	と薬剤耐性機構	2
第3項 β-ラクタマ	?ーゼ	4
第2節 β-ラクタマー	-ゼ阻害剤	6
第1項 β-ラクタム	¬系 β-ラクタマーゼ阻害剤	6
第2項 1,6-ジアザ	ビシクロ[3.2.1]オクタン系 β-ラクタマーゼ阻害剤	7
第3項 ボロン酸系	<i>β</i> -ラクタマーゼ阻害剤	10
第3節 本研究につい	ζ	11
第1項 本研究の目	的	11
第2項 新規経口D	BO 系 BLI のデザイン	11
第4節 本論文につい	τ	13
参考文献(緒論)		14
本論		17
第1章 2位に硫黄官	了能基を有する 1,6-ジアザビシクロ[3.2.1]オ	-クタン誘導体
の合成		17
** 1 約 筆 1 節 2 位に 磁 苦 官 信	能基を有する DBO 誘道休の合成戦略	
第1節 2世に航貨日日 単の第1節 2世に航貨日日	カル反応に上ス磁帯室能基の道入	
第2節 加灰酸 170	/// 反応による航貨日配金の寺/、 [] の合成	
第3節 スルホション	円 ひしん 刑 BLI の合成	25
第三節 スルホンアミ	至 BLI の1000 ド刑 BII の合成	28
第6節 スケールアップ	7 全 DDI いてい (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	33
第0節 ハク パクク 第7節 木音のまとめ	× u ×	
(第1節) 不早りまとの 参考文献(第1音)		
第9章 9位に広苦す	ア始其な右する16ジアザビシクロ[201]オ	- カタン 鉌道休
第2早 2位に10月日 のゴル 利米訂ケ	計形 本 2 有 9 3 1,0- 2 7 9 ビ 2 7 ロ [3.2.1] 4	ククノ 防守体
の活性・動態評価		37
第1節 2位の構造活性	生相関	37
第2節 6位の構造活性	生相関	
第3節 臨床分離株に	対する有効性	42
第4節 DBO 誘導体目	3身の抗菌活性	44
第5節 薬物動態		46
第6節 2位と6位の約	組み合わせ最適化	47
第7節 本章のまとめ		48
参考文献(第2章)		49
第3章 2位にスルオ	ヾキシドを有する 1,6-ジアザビシクロ[3.2.1]]オクタン誘導
体の構造最適化		50
第1節 多様な側鎖を	持った 2-スルフィニル-DBO の合成	50
第2節 2位側鎖の構	造活性相関	53
第3節 化合物 33 の多	多数株評価	56
第4節 化合物 33 の重	助態プロファイル	57
第5節 経口プロドラ	ッグの探索	58

第6節	経口投与による in vive	•薬効	59
第7節	安全性		60
第8節	本章のまとめ		60
参考文南	(第3章)		61
結語			62
業績リス	┝		63
謝辞			64
実験の部			65
第1章の)合成		65
第3章の)合成		101
化合物の	生物学的,物理学的評	価	131

緒論

第1節 薬剤耐性菌とβ-ラクタマーゼ

第1項 抗生物質と薬剤耐性菌

アレクサンダー・フレミングによるペニシリンの発見以来,数々の抗生物質が発見・開発 され人類の健康に貢献してきた.中でもβ-ラクタム系抗菌薬は,高い有効性と安全性を兼ね 備えた抗生物質として,ペニシリン系(ペナム)をはじめとして,セフェム,モノバクタム, カルバペネムといった複数の骨格をもったβ-ラクタム系抗菌薬が臨床現場で使われている (Figure 1).このように数多くのβ-ラクタムが開発された背景には,抗菌スペクトルの拡大や 投与経路の変更,血中半減期の改善による利便性の向上を志向した研究がされてきたことと 共に,耐性菌への対応に主眼を置いた数多くの研究がなされてきたことがある.耐性菌との 戦いは,新薬の開発と耐性菌の出現を繰り返す「いたちごっこ」であり,この中でモノバク タムやカルバペネムといった異なる骨格のβ-ラクタム抗菌薬が見いだされてきた.特にカル バペネム系抗菌薬は他の抗生物質に対する耐性菌に対して有効であり,現在,耐性菌に対す る「最後の手段」として使われている.^[1]

β-ラクタム系抗菌薬

Figure 1. A series of β -lactam antibiotics.

ー方で、これらの抗生物質の過剰な使用や誤った使用により、多剤耐性菌の問題が深刻化 しており、依然として新たな抗生物質の開発が求められている.世界保健機関 (WHO) が2017 年に発表した "Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics."^[2] によると、カルバペネム耐性アシネトバクター (CRAB, carbapenem-resistant *Acinetbacter baumannii*), カルバペネム耐性緑膿菌 (CRPA, carbapenem-resistant *Pseudomonus aeruginosa*),および、カルバペネム耐性腸内細菌科細菌 (CRE, carbapenemresistant *Enterobacteriaceae*) への対応が "Priority 1: Critical" に位置付けられている (Table 1). これらの耐性菌は β -ラクタム系抗菌薬だけでなくほとんど全ての抗生物質が効かない多剤 耐性菌であり、その対応は喫緊の課題である.^[3]

Table 1. Glo	bal Priority	List of Antibi	otic-Resistant	Bacteria to	Guide Res	earch, Disco	overy, and
Developmen	t of New An	tibiotics ^[2]					

-			
Priority 1 : CRITICAL	Acinetobacter baumannii, carbapenem-resistant	<i>Pseudomonas aeruginosa</i> , carbapenem-resistant	<i>Enterobacteriaceae</i> *, carbapenem-resistant, 3rd generation cephalosporin-resistant
Priority 2: HIGH	<i>Enterococcus faecium</i> , vancomycin-resistant	<i>Staphylococcus aureus</i> , methi- cillin-resistant, vancomycin in- termediate and resistant	Helicobacter pylori, clarithromycin-resistant
	<i>Campylobacter</i> , fluoroquinolone-resistant	Salmonella spp., fluoroquinolone-resistant	Neisseria gonorrhoeae, 3rd generation cephalosporin-resistant, fluoroquinolone-resistant
Priority 3: MEDIUM	Streptococcus pneumoniae, penicillin-non-susceptible	Haemophilus influenzae, amipicillin-resistant	<i>Shigella spp.</i> , fluoroquinolone-resistant

*Enterobacteriaceae include: Klebsiella pneumoniae, Escherichia coli, Enterobacter spp., Serratia spp., Proteus spp., Providencia spp., and Morganella spp.

第2項 細菌の構造と薬剤耐性機構

ハンス・グラムによって考案されたグラム染色法により、細菌はグラム陽性菌とグラム陰 性菌の2つに大別される.前項で言及した CRE や CRPA, CRAB は全てグラム陰性菌である. グラム陰性菌の構造を以下に示す (Figure 2). グラム陰性菌は細胞壁の外側に外膜と呼ばれる 特長的な膜構造を有している.外膜は細胞膜と同様に脂質二重膜で形成されているが、外側 にリポ多糖体の糖鎖を伸ばしている.薬剤の透過性の観点から見ると、脂質二重膜を透過す るためには脂溶性分子である必要があるが、外側のリポ多糖体を透過するためには親水性分 子である必要がある.つまり、外膜は脂溶性分子も親水性分子も通さない構造になっている. 一方で、栄養素(親水性物質)を取り込むために、外膜にはポーリンと呼ばれるタンパク構 造があり、β-ラクタム等の親水性の抗生物質はポーリンを経由することでグラム陰性菌の菌 体内に到達することができると言われている.^[4]

Figure 2. Structure of Gram-negative bacteria.

細菌が細胞レベルで獲得する耐性化のメカニズムは、1) 抗生物質を不活性化する酵素の産 生、2) 標的分子の変異や代替ルートの獲得、3) 薬物の膜透過性の変化の3つに大別できる (Figure 3). ^[5] このうち、1) 抗生物質を不活性化する酵素にはβ-ラクタムを分解するβ-ラク タマーゼやアミノグリコシド系抗生物質を不活性化するアミノグリコシド修飾酵素がある. また、2) 標的分子の変異や代替ルートの代表的なものとしては、β-ラクタムの標的分子であ る PBP2 (penicillin-binding protein 2) の PBP2'への変異がある. 3) 薬物の膜透過性の変化に関 しては、薬物を細胞外に排出する薬剤排出ポンプの発現やポーリンの欠損がある. これらの うち、CRE を含むグラム陰性菌における主要な耐性化機構はβ-ラクタマーゼの産生である.

Figure 3. Principal bacterial mechanism of antibiotic resistance.

第3項 β-ラクタマーゼ

β-ラクタマーゼはβ-ラクタム系抗菌薬を加水分解し、不活性化する酵素である. これらは 多様な基質特異性をもった一連の酵素群であり、様々な観点から分類されている. ^[6] 最もよ く使われている分類方法は、アミノ酸配列の相同性に基づいた Ambler の分類である. この分 類によると、β-ラクタマーゼは4つのクラス(クラス A, B, C, D)に分類できる. クラス A, C, D に属するβ-ラクタマーゼは活性中心にセリン残基をもったセリン-β-ラクタマーゼであ り、クラス B は活性中心に亜鉛イオンをもったメタロ-β-ラクタマーゼである.

セリン- β -ラクタマーゼによる β -ラクタムの加水分解機構を以下に示す (Figure 4A). まず はじめに,活性中心のセリンが β -ラクタムを求核攻撃することで,四面体中間体 (TI1) を形 成する. 続いて, TI1 からラクタム環の開環が進行し,セリン残基と共有結合した酵素複合体 (enzyme adduct) が形成される. この酵素複合体が水分子の求核攻撃を受けて四面体中間体 (TI2) を経由して加水分解されることで, β -ラクタムの加水分解が完了し, β -ラクタマーゼ が再生する.

続いて、メタロ- β -ラクタマーゼの反応機構を説明する (Figure 4B). まずはじめに Zn²⁺に 結合した水酸化物イオン (OH⁻) が β -ラクタムのカルボニル炭素を求核攻撃し、Zn²⁺に配位 することによって安定化された四面体中間体 (TI3) を形成する. 続いて、TI3 から β -ラクタ ムの開環が進行し、アニオン中間体 (anionic intermediate) を経由した後、アニオンがプロトン 化を受けることによって、 β -ラクタムの加水分解が完了し、触媒が再生する.

Figure 4. Hydrolysis mechanism of β -lactams by serine- β -lactamase (A) and metallo- β -lactamase (B).

各クラスの β -ラクタマーゼとその基質の範囲,および,代表的な酵素について以下に示す (Table 2). クラスAに属する β -ラクタマーゼは基質の範囲の観点から,いくつかのグループ に分けられる. グラム陰性菌が産生する酵素として代表的なものは,腸内細菌科細菌 (*Enterobacteriaceae*) においては TEM や SHV であり,大腸菌 (*E. coli*) や肺炎桿菌 (*K. pneumoniae*) においては CTX-M である. これらの β -ラクタマーゼの多くは基質特異性拡張型 β -ラクタマ ーゼ (ESBL, extended-spectrum β -lactamase) と呼ばれ,ペニシリン系の他にセファロスポリン やモノバクタムも加水分解できる.^[7] また,近年,KPC に代表されるようなカルバペネムも 分解できるセリンカルバペネマーゼも報告されている.^[8] クラス B はメタロ- β -ラクタマー ゼであり,モノバクタムを除く全てのクラスの β -ラクタムを分解する. IMP や VIM, NDM が知られている.^[9] クラス C の β -ラクタマーゼはセリンセファロスポリナーゼとも呼ばれ, セフタジジム,セフォタキシム,セフトリアキソン等の第三世代セファロスポリンやセファ マイシンを含むほぼ全てのセフェムを分解する.クラス D に属する β -ラクタマーゼは,ペニ シリン,セファロスポリン,モノバクタム系 β -ラクタムを分解する.また,OXA-23,24/40,48 といったいくつかの酵素はカルバペネマーゼ活性を有しており臨床上問題視されている.^[10]

-1	type	substrates				
class		penicillins	cephalosporins	carbapenems	monobactams	most relevant examples
А	Serine-	0	×	×	×	penicillinases from Gram- positive bacteria
		0	\bigtriangleup	×	×	TEM-1, TEM-2, SHV-1
	(ESBL)	0	0	×	Δ	SHV-2, TEM-10, CTX- M, GES-1
	(serin carbapenemase)	0	0	0	Δ	KPC, SME, NMC-A, GES-2
В	Metallo-	0	0	0	×	IMP, VIM, NDM
С	Serine-	0	0	×	0	AmpC, CMY, ACT-1, DHA
D	Serine-	0	0	Δ	0	OXA-1/30, OXA-10, OXA-23, OXA-24/40, OXA-48

Table 2. Substrate Scope and Relevant Examples of β-Lactamases

β-ラクタマーゼの名称について

KPC や OXA といった β-ラクタマーゼの名称は固有名詞であり,略語として扱わないのが一般的で ある. 肺炎桿菌 (*K. pneumoniae*)から発見されたカルバペネムを分解するβ-ラクタマーゼであること から *K. pneumoniae* carbapenemase の頭文字をとって KPC と命名されているように、略語のように見え る名称も存在するが、本論文では前述の一般則に従ってβ-ラクタマーゼの名称は略語ではなく固有名 詞として扱う.

第2節 β-ラクタマーゼ阻害剤

β-ラクタマーゼ産生菌に対しては、β-ラクタマーゼ阻害剤 (BLI) をβ-ラクタム系抗菌薬 と併用するというアプローチが有効である. 1982 年、米国にてクラブラン酸がアモキシシリ ンとの併用で臨床使用されて以降、いくつかのβ-ラクタム系 BLI は臨床現場で今もなお使用 されている.一方で、これらの古典的な BLI はカルバペネム耐性腸内細菌科細菌 (CRE) が産 生するようなβ-ラクタマーゼを阻害することは困難である. このような中、CRE にも有効な 新たな BLI の開発が行われ、1,6-ジアザビシクロ[3.2.1]オクタン (DBO) 骨格をもったアビバ クタムが 2015 年に FDA から承認された. その後、アビバクタムと同様に DBO 系 BLI のレ レバクタムやデュルロバクタム、ボロン酸系 BLI であるバボルバクタムといった新規 BLI が 次々と登場しており、これら2骨格を中心に新規 BLI の研究が盛んに行われている.^[5] 古典 的な BLI であるβ-ラクタム系、及び、DBO 系、ボロン酸系の BLI について以下で詳細を述 べる.

第1項 β-ラクタム系β-ラクタマーゼ阻害剤

β-ラクタム系 BLI は古くから臨床使用されている BLI であり, クラブラン酸, スルバクタ ム, タゾバクタムがある (Figure 5). このうち, クラブラン酸は経口薬として経口 β-ラクタム であるアモキシシリンとの併用薬で使われている.また, スルバクタムはアンピシリンと互 いにエステル結合で結びついた "mutual prodrug" というユニークなプロドラッグで経口投与 に用いられている (スルタミシリン).

Figure 5. A series of β -lactam type β -lactamase inhibitors.

これらの BLI は、基質拡張型 β -ラクタマーゼ (ESBL) を含むクラス A の β -ラクタマーゼ を阻害可能であるが、KPC をはじめとしたセリンカルバペネマーゼやクラス C, D のセリン β -ラクタマーゼはほとんど阻害できない.また、活性中心のセリン残基と共有結合を形成する という阻害様式から、クラス B のメタロ- β -ラクタマーゼも阻害できない.

β-ラクタム系 BLI の阻害メカニズムとして、クラブラン酸の SHV-1 阻害メカニズムの例 を以下に示す (Figure 6).^{[11], [12]} SHV-1 の Ser⁷⁰-OH がクラブラン酸のカルボニルを求核攻撃 し、四面体中間体を経由して、酵素複合体 EA-1 を形成する. 続いて、オキサゾリジンの開環 により EA-2 となった後、イミンーエナミンの異性化やエナミンの *cis-trans* の異性化と続く 脱炭酸によって、EA-5、6 が形成する. EA-6 はα,β-不飽和エステルであり、Ser¹³⁰ が 1,4-付 加することで架橋複合体 EA-7 を形成する. この架橋複合体 EA-7 は安定性が高く、酵素阻害 に大きく寄与していると考えられる. EA-7 は Ser¹³⁰ の加水分解を経て、アルデヒド EA-10 を 形成する. このアルデヒドは水和体 EA-9 との平衡状態にあることで、Ser⁷⁰ の加水分解に使 われる水分子をトラップし、EA-10 の加水分解によって酵素が再生するのを妨げている. こ れらの酵素複合体は、いくつかの工程を経て最終的には加水分解され酵素が再生するが、上 記のようないくつかの安定なものを含め、複数の酵素複合体を形成することで、結果として β-ラクタマーゼを阻害することができている.

Figure 6. Pathway of clavulanic acid-mediated serine β-lactamase inhibition.

第2項 1,6-ジアザビシクロ[3.2.1]オクタン系β-ラクタマーゼ阻害剤

ジアザビシクロオクタン (DBO) は、非 β -ラクタム系新規抗菌薬としてデザイン・合成された化合物である.^[13] 当初の期待に反して DBO 化合物の抗菌活性は弱かったが、KPC 等の セリンカルバペネマーゼを含むセリン β -ラクタマーゼに対して強力な阻害活性を示したこ とから、^[14] β -ラクタマーゼ阻害剤 (BLI) としての可能性が見いだされ、研究〜上市まで数 多くの誘導体が知られている (Figure 7).

アビバクタム (AVI) は最初に上市された DBO 系 BLI であり,セフタジジムと組み合わせ た静注薬として使用されている.^[15] AVI はクラス A, C のβ-ラクタマーゼに対する阻害能が 高い。一方で,クラス D に対しては OXA-48 等の一部のβ-ラクタマーゼを除いては阻害活性 が弱い.^{[16],[17]} DBO 系 BLI はクラス B のメタロ-β-ラクタマーゼ (MBL) を阻害できないた め,クラス B に対して安定なモノバクタム系抗菌薬のアズトレオナムとの併用効果も研究さ れており,^[18] この組み合わせの臨床試験も実施されている. レレバクタム (REL) は,イミ ペネム-シラスタチンとの併用で承認されている. AVI と同様に REL もクラス A, C のβ-ラ クタマーゼに対する阻害能が高いが,クラス D に対しては阻害活性を持たない.^[19] OprD ポ ーリン欠損や AmpC 高産生によるイミペネム耐性緑膿菌に対する有効性が報告されている点 が特徴である.^[20] デュルロバクタム (DUR) は母核に二重結合をもったユニークな DBO 誘

導体である.^[21] 多剤耐性緑膿菌/アシネトバクターに対応するために、クラス A,C に対する 阻害活性を維持しつつ、クラスDに対する活性を強化する目的でデザインされている。二重 結合の導入は、分子に歪みを与えることでβ-ラクタマーゼの活性中心のセリンとの反応性を 高めることが目的であり (DBO 系 BLI の阻害メカニズムは Figure 9 参照), それによってクラ スDに対する阻害活性の強化に成功している. また, DUR は PBP2 (penicillin-binding protein 2) を選択的に阻害することで, BLI であると同時に抗菌活性も示す. この PBP2 阻害作用に 着目して、同じく BLI でありながらアシネトバクターに抗菌作用を有するスルバクタム^[22]と の併用により、カルバペネム耐性アシネトバクターに特化して使用されている. ナクバクタ ム (NAC) はメロペネムとの併用で臨床開発中の DBO 誘導体である. NAC の β-ラクタマー ゼ阻害における活性やスペクトルはAVIと比較してやや劣る~同程度であるが、デュルロバ クタムと同様に PBP2 選択的な阻害作用により抗菌活性を示すことでβ-ラクタムとの併用効 果は高い.^[23] また, MBL に対して安定な傾向にあることで, MBL を阻害することはでき ないにもかかわらず,各種β-ラクタムとの組み合わせで MBL 産生菌に対して併用効果を示 す. ^[24] ジデバクタム (ZID) も同様に抗菌活性を併せ持った BLI であり、セフェピムとの併 用で現在臨床試験中である.^{[19], [25]} WCK 4234 は他の DBO 系 BLI と異なり, 2 位にアミドで はなくシアノ基を持っていることが特徴である.シアノ基の強い電子求引性の影響のためか, 各種ラクタマーゼとの反応性 (acylation rate, kacvl) が向上しており, AVI 等が苦手とするクラ スDに対する阻害活性が向上している。[19], [26]

Figure 7. A series of DBO type β -lactamase inhibitors.

前述した DBO 系 BLI は全て静脈注射によって投与されているが, 最近, プロドラッグ化に よって経口吸収性を付与した DBO 誘導体が報告されている (Figure 8A). ARX-1796 は AVI の経口プロドラッグであり, 末端のエステルがエステラーゼによって加水分解された後, β-ラクトン環の形成によってスルホン酸が遊離するというユニークなメカニズムが報告されて いる (Figure 8B).^[27] ETX0282 は ETX1317 の 6 位フルオロ酢酸構造をエステル化した経口プ ロドラッグである.^{[28],[29]} DUR と同様に母核に二重結合を導入によって分子の歪みを増大さ せることで, β-ラクタマーゼの活性中心のセリンとの反応性を高めている (阻害メカニズム は Figure 9 参照).また,他の DBO 系 BLI と異なり 6 位がフルオロ酢酸であるという特徴を 有している.

Figure 8. (A) A series of orally available DBO type β -lactamase inhibitor and its active form. (B) Mechanism of AVI release from ARX-1796.

DBO 系 BLI はセリンβ-ラクタマーゼの活性中心のセリンと安定なカルバモイル - 酵素複 合体 (carbamoyl-enzyme complex) を形成することによって、 β -ラクタマーゼを阻害する. (Figure 9). ^[30] なお、DBO と β -ラクタマーゼとの反応はアシル化ではなくカルバモイル化で あるが、アシル化 (acylation) と表現されることが一般的であるため、Figure 9 においても acylation と表記している. β -ラクタム系 BLI と異なり、DBO 系 BLI の場合は、この酵素複合 体から DBO の再環化により阻害剤と酵素が共に再生する逆反応 (deacylation) が存在し、 β -ラクタマーゼを可逆的に阻害する. この逆反応以外の β -ラクタマーゼの再生プロセスとして は、酵素複合体が直接加水分解されるのではなく(direct hydrolysis)、脱硫酸化 (desulfation) が 進行した後に、カルバモイル基の加水分解によってラクタマーゼが再生することが報告され ている. ^[31] また、DBO の再環化による逆反応の進行速度は酵素によって異なり、クラス A および C においては非常に早く(分単位)、クラス D においては遅い(数日単位). ^[32]

Figure 9. Pathway of DBO-mediated serine β-lactamase inhibition.

第3項 ボロン酸系β-ラクタマーゼ阻害剤

ボロン酸誘導体は,β-ラクタム系抗菌薬のβ-ラクタマーゼによる加水分解の中間体である 四面体中間体を模倣することで、活性中心に対して親和性を示し、β-ラクタマーゼを阻害す る (Figure 10A).^[33] 現在知られているボロン酸系 BLI を以下に示す (Figure 10B). バボルバ クタム (VAB) は 2017 年に FDA によって承認された最初のボロン酸系 BLI であり、メロペ ネムとの併用で使用されている.^[34] VAB は KPC を含むクラス A およびクラス C のラクタマ ーゼに対して阻害活性を持っているが、クラス B,D に対する阻害能はない.より広域な阻害 スペクトルを持ったボロン酸系 BLI の探索が行われる中で見出されたのがタニボルバクタム である.^[35] タニボルバクタムはクラス A.C に加えて, クラス B.D に対しても阻害活性を持 っており、セフェピムとの併用でカルバペネム耐性腸内細菌科細菌 (CRE) だけでなくカルバ ペネム耐性緑膿菌 (CRPA) に対しても有効であることが確認されている. VNRX-7145 は VNRX-5236 のカルボン酸構造をエステル化した経口プロドラッグであり、クラス A. C. D の β-ラクタマーゼを阻害することができる.^[36]経口セフェムであるセフチブテンとの併用で アビバクタム/セフタジジムと同等の有効性を示す. QPX7728 は非常に広域な阻害スペクトル を持ったボロン酸系 BLI であり、全クラスのβ-ラクタマーゼに対して阻害活性を示す.^[37] QPX7728 はタニボルバクタムが有効でないクラス B β-ラクタマーゼの1 つである IMP も阻 害することができる. 各種 β-ラクタムと組み合わせることで, CRE だけでなくカルバペネム 耐性アシネトバクター (CRAB) および CRPA に対する有効性も確認されている. また, QPX7728 はプロドラッグ化なしでも経口吸収性を示し、プロドラッグ化によるさらなる経口 吸収性の向上も期待できるとされている.

Figure 10. (A) Tetrahedral intermediate of cefem. (B) A series of cyclic boronate type β -lactamase inhibitors.

第3節 本研究について

第1項 本研究の目的

前節で述べたように、現在数多くの新規 BLI が開発されている.しかしながら、患者や医療従事者の負担軽減、医療費の削減の観点から、在宅でも治療可能な経口薬にニーズはあるものの、CRE にも有効な経口 BLI は未だ上市に至っていない.また、DBO 系 BLI に着目すると、DBO 骨格が化学的に不安定で誘導体の合成難易度が高いこともあり、既存の化合物の2位置換基はアミド誘導体もしくはシアノ基に限定されていることから(Figure 7)、新たな官能基の探索余地が残されている.さらに、現在開発段階にある経口 DBO 系 BLI は ARX-1796とETX0282であるが、ARX-1796の活性体である AVI に対して感受性が低下するβ-ラクタマーゼの変異がすでに報告され始めている.^{[38],[39]}また、ETX0282 は環内に二重結合を有するため、他の DBO 系 BLI と同じ出発物質から合成することができず、市販されている原料から12工程という長い工程を経て合成する必要がある.^[28]

このような背景の下、本研究では新規経口 DBO 系 β -ラクタマーゼ阻害剤の創出を目的とし、DBO 骨格 2 位の新たな置換基探索を行うこととした.

第2項 新規経口 DBO 系 BLI のデザイン

新規 DBO 系 BLI をデザインするにあたっては、既存薬よりも優れた薬効が期待できることが重要であると考えた. DBO 系 BLI による β -ラクタマーゼの阻害を速度論の観点から考えると、Michaelis-Menten 機構で考えることができる (Figure 11). すなわち、DBO 化合物、および、反応前の β -ラクタマーゼ (Apo-enzyme) は、非共有結合性の Michaelis 複合体 (E:I)を経由した後に、共有結合性のカルバモイル - 酵素複合体 (E-I)を形成し、酵素の活性が阻害される. それぞれの反応の速度定数を $k_1, k_2, k_1, k_2, r > \nu$ ル化の速度定数を k_{acyl} とすると、アシル化速度 V_{acyl} は eq1 のようになる. この式を k_{acyl} について解くと eq2 のようになり、 k_{acyl} は Michaelis 複合体の結合乖離定数 K、および、Michaelis 複合体から β -ラクタマーゼの活性中心のセリン残基と DBO のカルボニルが反応し共有結合が形成される反応の速度定数 k_2 で表すことができる. すなわち、アシル化速度を向上させる方法は、① DBO と β -ラクタマーゼの親和性を向上させる(Kを小さくする)、② DBO のカルボニル基の化学的反応性を向上させる(k_2 を大きくする)の2通りが考えられる. しかしながら、構造の異なるあらゆる β -ラクタマーゼに対して親和性を向上させることは現実的ではないと考えられるため、新規DBO のデザインにおいては化学的反応性を高めることに主眼を置くべきであると考えた.

$$V_{acyl} = k_{acyl}[E][I] = k_2[E:I]$$
⁽¹⁾

$$k_{acyl} = k_2[E:I]/[E][I] = k_2/K$$

 $\hbar \hbar U, K = [E][I]/[E:I]$ (2)

Figure 11. (A) Scheme representing the interaction of β -lactamases (E) with DBOs (I). (B) Chemical representation of (A).

DBO 骨格の化学的反応性を高めることで阻害活性の改善に成功している例として WCK 4234 がある. ^{[19], [26]} WCK 4234 は AVI の 2 位置換基をアミドからシアノ基へと変換したもの であるが,両官能基の電子求引性の指標である Hammett 則の置換基定数 σ_m 値はそれぞれ, σ_m = 0.28 (-CONH₂), 0.56 (-CN) であり, ^[40] シアノ基の方が強力な電子求引性基である. この電 子求引性の増強によって,WCK 4234 は AVI と比較して 10~100 倍以上のアシル化速度の向 上に成功している (Figure 12). この現象が構造的に大きく異なるクラス A, C, D それぞれの ラクタマーゼに対して確認されていることからも,シアノ基への変換が構造的に親和性を高 めたのではなく,カルボニル基の化学的反応性を向上させることでアシル化速度の改善につ ながっていると考えられる.

Figure 12. Relationship between inductive effect of functional group at the C2 position and acylation rate.

前述のシアノ基は強力な電子求引性基として、DBO 化合物のβ-ラクタマーゼ阻害活性を 向上させるのに有用であった.しかしながら、アミドと異なり、シアノ基は側鎖を持たない ため、側鎖の変換によって化合物の動態特性や物性を調整することができないという欠点が ある.そこで、シアノ基と同様に強力な電子求引性を有するスルホン、スルホキシド、スル ホンアミドといった硫黄系官能基に着目した (Figure 13).これらの官能基のσm 値はシアノ基 と同程度であるため、強力なβ-ラクタマーゼ阻害活性が期待でき、多様な側鎖を持った化合 物の合成も可能である.一方で、DBO 骨格の2位にこのような硫黄官能基を導入する方法は 知られておらず、合成法の探索から研究を開始する必要がある.

Figure 13. Design of 2-thio-substituted novel DBO compounds.

第4節 本論文について

本論文は緒論、本論3章および結論から成っている.

第1章は「2位に硫黄官能基を有する1,6-ジアザビシクロ[3.2.1]オクタン誘導体の合成」と 題し、脱炭酸的ラジカル反応による2位へのスルフィドの導入を起点に、スルホン、スルホ キシド、スルホンアミドを有するDBO系BLIの合成研究について述べる.

第2章は「2位に硫黄官能基を有する 1,6-ジアザビシクロ[3.2.1]オクタン誘導体の活性・動 態評価」と題し,第1章で合成した DBO 誘導体のβ-ラクタマーゼ阻害活性やセフィキシム と併用した場合の効果,薬物動態について述べる.また,この研究の過程で見出した本 DBO 誘導体のユニークな抗菌活性についても併せて述べる.

第3章は「2位にスルホキシドを有する1,6-ジアザビシクロ[3.2.1]オクタン誘導体の構造最 適化」と題して,第2章で見出した活性と動態を両立できる2位スルホキシド,6位フルオロ 酢酸の組み合わせに対して,2位側鎖の構造最適化を実施した結果を述べる.また,最適化し た誘導体の経口プロドラッグ化検討,および,セフチブテンとの併用経口投与による *in vivo* 薬効試験を実施した結果についても併せて述べる.

参考文献(緒論)

- Singh, G. S. β-Lactams in the New Millennium. Part-I: Monobactams and Carbapenems. *Mini. Rev. Med. Chem.* 2004, *4*, 69–92.
- WHO. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017. https://www.who.int/medicines/publications/publications /WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf?ua=1 (accessed January 22, 2022).
- 3) Gupta, N.; Limbago, B. M.; Patel, J. B.; Kallen, A. J. Carbapenem-Resistant *Enterobacteriaceae*: Epidemiology and Prevention. *Clin. Infect. Dis.* **2011**, *53*, 60–67.
- Yoshimura, F.; Nikaido, H. Diffusion of β-Lactam Antibiotics Through the Porin Channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 1985, 27, 84–92.
- González-Bello, C.; Rodríguez, D.; Pernas, M.; Rodríguez, Á.; Colchón, E. β-Lactamase Inhibitors To Restore the Efficacy of Antibiotics against Superbugs. J. Med. Chem. 2020, 63, 1859– 1881.
- Bush, K.; Bradford, P. A.; Interplay between β-lactamases and new β-lactamase inhibitors. *Nat. Rev. Microbiol.* 2019, *17*, 295–306.
- Paterson, D. L.; Bonomo, R. A. Extended-Spectrum β-Lactamases: a Clinical Update. *Clin. Microbiol. Rev.* 2005, 18, 657–686.
- Walther-Rasmussen, J.; Høiby, N. Class A carbapenemases. J. Antimicrob. Chemother. 2007, 60, 470–482.
- Bebrone, C. Metallo-β-lactamases (Classification, Activity, Genetic, Organazation, Structure, Zinc Coordination) and their superfamily. 2007, 74, 1686–1701.
- Leonard, D. A.; Bonomo, R. A.; Powers, R. A. Class D β-Lactamases: A Reappraisal after Five Decades. Acc. Chem. Res. 2013, 46, 2407–2415.
- Wang, D. Y.; Abboud, M. I.; Markoulides, M. S.; Brem, J.; Schofield, C. J. The road to avibactam: the first clinically useful non-β-lactam working somewhat like a β-lactam. *Future Med. Chem.* 2016, *8*, 1063–1084.
- 12) Sulton, D.; Pagan-Rodriguez, D.; Zhou, X.; Liu, Y.; Hujer, A. M.; Bethel, C. R.; Helfand, M. S.; Thomson, J. M.; Anderson, V. E.; Buynak, J. D.; Ng, L. M.; Bonomo, R. A. Clavulanic Acid Inactivation of SHV-1 and the Inhibitor-resistant S130G SHV-1 β-Lactamase. *J. Biol. Chem.* 2005, 280, 35528–35536.
- Coleman, K. Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. *Curr. Opin. Microbiol.* 2011, 14, 550–555.
- 14) Bonnefoy, A.; Dupuis-Hamelin, C.; Steier, V.; Delachaume, C.; Seys, C.; Stachyra, T.; Fairley, M.; Guitton, M.; Lampilas, M. In vitro of AVE1330A, an innovative broad-spectrum non β-lactam β-lactamase inhibitor. *J. Antimicrob. Chemother.* 2004, *54*, 410–417.
- 15) Zasowski, E. J.; Rybak, J. M.; Rybak, M. J. The β-Lactams Strike Back: Ceftazidime-Avibactam. *Pharmacotherapy* **2015**, *35*, 755–770.
- 16) Ehmann, D. E.; Jahic, H.; Ross, P. L.; Gu, R. F.; Hu, J.; Durand-Réville, T. F.; Lahiri, S.; Thresher, J.; Livchank, S.; Gao, N.; Palmer, T.; Walkup, G. K.; Fisher, S. L. Kinetics of avibactam inhibition against class A, C, and D β-lactamases. *J. Biol. Chem.* **2013**, 288, 27960–27971.
- 17) Mushtaq, S.; Warner, M.; Livermore, D. M. In vitro activity of ceftazidime+NXL104 against

Pseudomonas areruginosa and other non-fermenters. *J. Antimicrob. Chemother.* **2010**, *65*, 2376–2381.

- 18) Wang, X.; Zhang, F.; Zhao, C.; Wang, Z.; Nichols, W. W.; Testa, R.; Li, H.; Chen, H.; He, W.; Wang, Q.; Wang, H. *In Vitro* Activities of Ceftazidime-Avibactam and Aztreonam-Avibactam against 372 Gram-Negative Bacilli Collected in 2011 and 2012 from 11 Teaching Hospitals in China. *Antimicrob. Agents Chemother.* 2014, *58*, 1774–1778.
- 19) Papp-Wallace, K. M.; Nguyen, N. Q.; Jacobs, M. R.; Bethel, C. R.; Barnes, M. D.; Kumar, V.; Bajaksouzian, S.; Rudin, S. D.; Rather, P. N.; Bhavsar, S.; Ravikumar, T.; Deshpande, P. K.; Patil, V.; Yeole, R.; Bhagwat, S. S.; Patel, M. V.; Akker, F. v. d.; Bonomo, R. A. Strategic Approaches to Overcome Resistance against Gtam-Negative Pathogens Using β-Lactamase Inhibitors and β-Lactam Enhancers: Activity of Three Novel Diazabicyclooctanes WCK 5153, Zidebactam (WCK 5107), and WCK 4234. *J. Med. Chem.* 2018, *61*, 4067–4086.
- 20) Hirsch, E. B.; Ledesma, K. R.; Chang, K. T.; Schwartz, M. S.; Motyl, M. R.; Tam, V. H. *In Vitro* Activity of MK-7655 a Novel β-Lactamase Inhibitor, in Combination with Imipenem against Carbapenem-Resistant Gram-Negative Bacteria. *Antimicrob. Agents Chemother.* 2012, *56*, 3753– 3757.
- 21) Durand-Réville, T. F.; Guler S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A. B.; McLeod, S. M.; Carter, N. M.; Moussa, S. H.; Velez-Vega, C.; Olivier, N. B.; McLaughlin, R.; Gao, N.; Thresher, J.; Palmer, T.; Andrews, B.; Giacobbe, R. A.; Newman, J. V.; Ehmann, D. E.; Jonge, R. d.; O'Donnell, J.; Mueller, J. P.; Tommasi, R. A.; Miller A. A. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gramnegative bacteria including *Acinetobacter baumannii*. *Nat. Microbiol.* **2017**, *2*, No. 17104.
- 22) Karageorgopoulos, D. E.; Falagas, M. E. Current control and treatment of multidrug-resistant *Acinetobacter baumannii* infections. *Lancet Infect. Dis.* **2008**, *8*, 751–762.
- 23) Morinaka, A.; Tsutsumi, Y.; Yamada, M.; Suzuki, K.; Watanabe, T.; Abe, T.; Furuuchi, T.; Inamura, S.; Sakamaki, Y.; Mitsuhashi, N.; Ida, T.; Livermore, D. M. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam 'enhancer'. *J. Antimicrob. Chemother.* **2015**, *70*, 2779–2786.
- 24) Mushtaq, S.; Vickers, A.; Woodford, N.; Haldimann, A.; Livermore, D. M. Activity of nacubactam (RG6080/OP0595) combinations against MBL-producing Enterobacteriaceae. J. Antimicrob. Chemother. 2019, 74, 953–960.
- 25) Thomson, K. S.; AbdelGhani, S.; Snyder, J. W.; Thomson, G. K. Activity of Cefepime-Zidebactam against Multidrug-Resistant (MDR) Gram-Negative Pathogens. *Antibiotics* 2019, 8, No. 32.
- 26) Mushtaq, S.; Vickers, A.; Woodford, N.; Livermore, D. M. WCK 4234, a novel diazabicyclooctane potentiating carbapenems against Enterobacteriaceae, *Pseudomonas* and *Acinetobacter* with class A, C and D β-lactamases. J. Antimicrob. Chemother. 2017, 72, 1688–1695.
- 27) Gordon, E. M.; Duncton, M. A. J.; Gallop M. A. Orally Absorbed Derivatives of the β-Lactamase Inhibitor Avibactam. Design of Novel Prodrugs of Sulfate Containing Drugs. J. Med. Chem. 2018, 61, 10340–10344.
- 28) Durand-Réville, T. F.; Comita-Prevoir, J.; Zhang, J.; Wu, X.; May-Dracka, T. L.; Romero, J. A. C.; Wu, F.; Chen, A.; Shapiro, A. B.; Carter, N. M.; McLeod, S. M.; Giacobbe, R. A.; Verheijen,

J. C.; Lahiri, S. D.; Sacco, M. D.; Chen, Y.; O'Donnell, J. P.; Miller, A. A.; Mueller, J. P.; Tommasi, R. A. Discovery of an Orally Available Diazabicyclooctane Inhibitor (ETX0282) of Class A, C, and D Serine β-Lactamases. *J. Med. Chem.* **2020**, *63*, 12511–12525.

- 29) Miller, A. A.; Shapiro, A. B.; McLeod, S. M.; Carter, N. M.; Moussa, S. H.; Tommasi, R.; Mueller J. P. *In Vitro* Characterization of ETX1317, a Broad-Spectrum β-Lactamase Inhibitor That Restores and Enhances β-Lactam Activity against Multi-Drug-Resistant *Enterobacteriales*, Including Carbapenem-Resistant Strains. *ACS Infect. Dis.* **2020**, *6*, 1389–1397.
- 30) King, D. T.; King, A. M.; Lal, S. M.; Wright, G. D.; Strynadka, C. J. Molecular Mechanism of Avibactam-Mediated β-Lactamase Inhibition. ACS Infect. Dis. 2015, 1, 175–184.
- 31) Krishnan, N. P.; Nguyen, N. Q.; Papp-Wallace, K. M.; Bonomo, R. A.; van den Akker, F. Inhibition of *Klebsiella* β-lactamases (SHV-1 and KPC-2) by avibactam: a structural study. *PloS One* 2015, 10, e0136813.
- 32) Lahiri, S. D.; Mangani, S.; Jahic, H.; Benvenuti, M.; Durand-Réville, T. F.; De Luca, F.; Ehmann, D. E.; Rossolini, G. M.; Alm, R. A.; Docquier, J. D. Molecular basis of selective inhibition and slow reversibility of avibactam against class D carbapanemases: a structure-guided study of OXA-24 and OXA-48. ACS Chem. Biol. 2015, 10, 591–600.
- 33) Smoum, R.; Rubinstein, A.; Dembitsky, V. M.; Srebnik, M. Boron containing compounds as protease inhibitors. *Chem. Rev.* 2012, 112, 4156–5220.
- 34) Cho, J. C.; Zmarlicka, M. T.; Shaeer K. M.; Pardo, J. Meropenem/Vaborbactam, the First Carbapenem/β-Lactamase Inhibitor Combination. Ann. Pharmacother. 2018, 52, 769–779.
- 35) Liu, B.; Trout, R. E. L.; Chu, G-H.; McGarry, D.; Jackson, R. W.; Hamrick, J. C.; Daigle, D. M.; Vusick, S. M.; Pozzi, C.; Luca, F. D.; Benvenuti, M.; Mangani, S.; Docquier, J-D.; Weiss, W. J.; Pevear, D. C.; Xerri, L.; Burns, C. J. Discovery of Taniborbactam (VNRX-5133): A Broad-Spectrum Serine- and Metallo-β-lactamase Inhibitor for Carbapenem-Resistant Bacterial Infections. *J. Med. Chem.* **2020**, *63*, 2789–2801.
- 36) Trout, R. E.; Zulli A.; Mesaros, E.; Jackson, R. W.; Boyd, S.; Liu, B.; Hamrick, J.; Daigle, D.; Chatwin, C. L.; John, K.; McLaughlin, L.; Cusick, S. M.; Weiss, W. J.; Pulse, M. E.; Pevear, D. C.; Moeck, G.; Xerri, L.; Burns, C. J. Discovery of VNRX-7145 (VNRX-5236 Etzadroxil): An Orally Bioavailable β-Lactamase Inhibitor for Enterobacterales Expressing Ambler Class A, C, and D Enzymes. *J. Med. Chem.* **2021**, *64*, 10155–10166.
- 37) Hecker, S. J.; Reddy, K. R.; Lomovskaya, O.; Griffith, D. C.; Rubio-Aparicio, D.; Nelson, K.; Tsivkovski, R.; Sun, D.; Sabet, M.; Tarazi, Z.; Parkinson, J.; Totrov, M.; Boyer, S. H.; Glinka, T. W.; Pemberton, O. A.; Chen, Y. Discovery of Cyclic Boronic Acid QPX7728, an Ultrabroad-Spectrum Inhibitor of Serine and Metallo-β-lactamases. J. Med. Chem. 2020, 63, 7491–7507.
- 38) Compain, F.; Arthur, M. Impaired Inhibition by Avibactam and Resistance to the Ceftazidime-Avibactam Combination Due to the D¹⁷⁹Y Substitution in the KPC-2 β-Lactamase. *Antimicrob. Agents Chemother.* **2017**, *61*, e00451-17.
- 39) Venditti, C.; Nisii, C.; Ballardini, M.; Meledandri, M.; DiCaro, A. Identification of L169P mutation in the omega loop of KPC-3 after a short course of ceftazidime/avibactam. *J. Antimicrob. Chemother.* 2019, 74, 2466–2467.
- 40) Hansch, C.; Leo, A.; Taft R. W. A Survey of Hammett Substituent Constants and Resonance and Field Parameters. *Chem. Rev.* **1991**, *91*, 165–195.

本論

第1章 2位に硫黄官能基を有する 1,6-ジアザビシクロ[3.2.1]オクタン誘 導体の合成

第1節 2位に硫黄官能基を有する DBO 誘導体の合成戦略

目的とする2位に硫黄官能基を有するDBO誘導体は、2位にスルフィドをもった中間体Aから酸化反応等の官能基変換を経ることで合成できると考えた (Figure 1-1). また、スルフィド中間体Aは、市販のDBO 骨格を持ったカルボン酸1から脱炭酸的ラジカル反応によって合成できると考えた. なお、カルボン酸1は入手性の良いピログルタミン酸から合成することも可能である.^[1]

preparable from pyroglutamic acid

DBO 化合物は立体的なひずみによって1位の窒素原子の孤立電子対とカルボニル炭素が共鳴していない (Figure 1-2). そのため、ウレア構造であるにもかかわらず、カルボニルの求電子性は高い.また、孤立電子対がカルボニルと共鳴していないために、1位の窒素原子は塩基性を有しているが、これがプロトン化を受けることによってカルボニルの求電子性はさらに向上する.そのため、DBO 化合物は酸や塩基、熱によって容易に開環するという性質があり、DBO 環に対して-SR 基を導入する場合には温和な反応条件を設定する必要がある.

Figure 1-2. Structural feature of DBO compound.

カルボン酸をスルフィドに変換する反応例としては、チオヒドロキサム酸エステルの光照 射による脱炭酸的ラジカル反応が古くから知られている (Scheme 1-1).^[2] すなわち、カルボ ン酸と 2-メルカプトピリジン-N-オキシドの縮合によって得られる 2-チオキソピリジニルエ ステル(Barton エステル)は、光照射によって N-O 結合が開裂し、カルボキシラジカルを生じ る. このカルボキシラジカルは脱炭酸を伴って 1 炭素減炭したアルキルラジカルを生成し、 系中のジスルフィドと反応することでスルフィドが得られる.この反応は光照射下、0 °C か つ中性という温和な条件で進行するため、酸や塩基に対して不安定な DBO 骨格をもった化合 物の合成に適している.

Scheme 1-1. Photo-Induced Decarboxylative Thiolation

第2節 脱炭酸的ラジカル反応による硫黄官能基の導入

前述の脱炭酸的ラジカル反応を用いて DBO 骨格 2 位への硫黄置換基の導入を試みた (Scheme 1-2). カルボン酸 1 を遮光条件下, EDC·HCl を用いて 2-メルカプトピリジン-N-オキ シド 4 と縮合し, ラジカル前駆体の Barton エステル 3 を調製した. この Barton エステル 3 を 単離することなく系中に5 当量のジフェニルジスルフィド 5a を加え, 氷冷下, LED ランプを 用いて白色光を照射したところ, 目的の 2a を 1,1,2,2-テトラクロロエタンを内部標準として 用いた NMR 収率で 61%, 単離収率 46%で得ることが出来た. NMR 収率と比較して単離収率 が低い原因は, スルフィド 2a が酸に対して不安定であるためと考えられる. 後述のスルフィ ド 2b を TLC で 2 次元展開したところ, シリカゲル上での分解が確認されている (Figure 1-5). この反応において, 2a は単一のジアステレオマーとして得られた. その相対配置につい ては, 8 位の axial 位のプロトン H_a と-SPh 基のオルト位プロトン H_d との間に NOE 相関が観 測されたことから決定した (Figure 1-3a). 立体選択的に目的物が得られたのは, ラジカル中間 体 7 が convex 面からジスルフィドと反応したためであると考えている (Figure 1-3b).

Scheme 1-2. Introduction of -SPh Group via Photo-Reactive Ester 3

^aNMR yield was determined by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard.

Figure 1-3. (A) NOESY spectrum of 2a. (B) Proposed mechanism of diastereoselective thiolation.

比較的良好な収率でジアステレオ選択的にスルフィド2aを合成することができたため,続いて、ジメチルジスルフィド6を用いて同様の条件で-SMe基の導入を試みた(Scheme 1-3). その結果、ジメチルジスルフィドを5当量用いた場合では収率は30%(NMR yield)に留まり、 ジフェニルジスルフィド5aを用いた場合(Scheme 1-2)と比較して収率が低下した.ジメチ ルジスルフィド6を45当量用いることで52%(NMR yield)まで収率が改善することは確認 できたものの、今後、構造活性相関(SAR、structure-activity relationship)研究のために、多様な アルキル側鎖をもった化合物を合成することを考えると、より少ない試薬量で収率を改善す る必要がある.アルキル系のジスルフィドを用いる場合に過剰量の試薬が必要であることは 過去の報告とも一致し、未だに解決されていない課題である(Scheme 1-4).^{[2],[3]}

Scheme 1-3. Introduction of -SMe Group via Photo-Reactive Ester 3

Scheme 1-4. Reported Examples of Photo-Induced Decarboxylative Thiolation using MeSSMe

-SMe 基の導入効率を改善するために-SMe 化試薬の検討を行った (Table 1-1). まず, MeSO₂SMe (8)を5当量用いたところ,ジメチルジスルフィド6を45当量用いた場合と同等 の47%収率で,スルフィド2bを得ることができた.また,非対称ジスルフィドPhSSMe (5b) を用いた場合にも同様に,NMR 収率48%,単離収率33%で目的の2bを得ることができた. 単離収率とNMR 収率に乖離が見られるのは,2bが弱酸性のシリカゲルに対して不安定であ るからだと考えている.スルフィド2bをEtOAc/hexane系で2次元展開したTLCをFigure 1-4に示すが,1度y軸方向に展開された2bがTLC上で分解した分解物が,2度目のx軸方向 への展開時に観測されている.非対称ジスルフィド5bを用いた場合,-SMe基だけでなく-SPh 基も導入される可能性があるが,crudeの¹HNMRの積分比から判断すると,-SPh基が導入 された化合物の生成は8%であった.

筆者の知る限り,-SMe 源となる試薬を変更することで収率を改善した例はなく,本知見は DBO 誘導体の合成研究だけでなく,様々な硫黄含有化合物の合成に対して応用できるもので あると考えられる.

Table 1-1. Optimization of Reaction Condition for Introduction of -SMe Group

^aYield was determined by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard. ^bIsolated yield.

Figure 1-4. 2D developed TLC of 2b.

第3節 スルホン型 BLI の合成

フェニルスルフィド 2a, および, メチルスルフィド 2b が合成できたため, それぞれの化合物をスルホンへと酸化し,目的のβ-ラクタマーゼ阻害剤 (BLI) に誘導できるかを検討した (Scheme 1-5). スルフィド 2a, 2b をそれぞれ 2.2 当量の *m*-CPBA で酸化したところ,収率良く スルホン 9a, 9b を得ることが出来た.続いてアビバクタムの合成法^{III}を参考に,6位ベンジル オキシアミンの Bn 基を Pd/C を用いた水素添加反応で脱保護し,SO₃-pyridine を用いて硫酸 化することで,目的の 11a, 11b を良好な収率で得た.

目的としていたスルホン型の DBO 化合物 11a, 11b が合成できたため,異なる側鎖を持った誘導体の合成も行った.アミドをもった 11c およびイミダゾリル基をもった 11d の合成法を以下に示す (Scheme 1-6). これまでと同様に、カルボン酸 1を Barton エステルへと変換し、 脱炭酸的ラジカル反応によってスルフィドを合成した.活性エステルの調製は、これまで通り2-メルカプトピリジン-N-オキシド4との縮合による方法(工程 b)だけでなく、オキサチ アゾロピリジニウム塩⁽⁴⁾15を用いることも可能であった(工程 a).-SR 源としては、エステ ル基をもった非対称ジスルフィド 16 およびイミダゾリル基をもったチオスルホネート 19 を それぞれ使用し、白色 LED 照射下、反応を行うことで、中程度の収率で目的のスルフィドを 得た(工程 a, b).この反応を利用してカルボン酸 1からアミド 13を直接合成しようと試み たが、反応が進行しなかったため、エステル体 2c を経由して合成を行っている.化合物 2c の メチルエステルを LiOH で加水分解し(工程 c)、アンモニア源として炭酸水素アンモニウム を用いてアミド 13 へと変換した(工程 d).化合物 13 および 2d を Scheme 1-5 と同様の条件 で、スルホンへの酸化、脱 Bn 化、硫酸化を行い、目的の 11c, 11d を合成することができた.

^aReagents and conditions: (a) 2-oxo-[1,4,2]oxathiazolo[2,3-*a*]pyridin-4-ium chloride (**15**), Et₃N, CH₂Cl₂, rt, in the dark, then PhSSCH₂COOMe (**16**), rt, white LEDs, 35% for **2c**; (b) 2-mercaptopyridine 1-oxide (**4**), EDC·HCl , CH₂Cl₂, rt, in the dark, then *tert*-butyl 4-[(tosylthio)methyl]-1*H*-imidazole-1-carboxylate (**19**), rt, white LEDs, 45% for **2d**; (c) LiOH, THF/H₂O, 0 °C, 85%; (d) NH₄HCO₃, Boc₂O, pyridine, 1,4-dioxane/H₂O, rt, 18%; (e) *m*-CPBA, CH₂Cl₂, 0 °C, 60–74%; (f) TFA, CH₂Cl₂, rt, 92%; (g) (i) Pd/C, H₂ (1 atm), rt, (ii) SO₃-pyridine, rt, 7–52% over 2 steps.

DBO 系 BLI においては、6 位に硫酸構造をもった誘導体だけでなく、カルボン酸型の誘導 体も知られている.^{[5]-[7]} 経口プロドラッグ化を考慮すると6 位カルボン酸型のβ-ラクタマー ゼ阻害活性にも興味がもたれるため、それらの合成も試みた (Scheme 1-7). 塩基として K₂CO₃ を用いて、ヒドロキシルアミン 10b をそれぞれ対応するα-ハロ酢酸エステル 22a-22c でアル キル化することで、6 位に酢酸構造が導入された 20a-20d を合成した(工程 a). この時使用 した 2-ブロモ-2-フルオロ酢酸エチル 22c はラセミ体であり、ジアステレオマーの関係にある 20c、20d が得られるが、これらはシリカゲルカラムクロマトグラフィーにて分離することが できた. なお、後述の立体選択的な合成 (Scheme 1-8) によって得られた 20d との比較から、 20c と 20d の相対配置を決定している. 化合物 20a のパラニトロベンジル (PNB) 基を水素添 加反応で脱保護し、NaHCO₃ でナトリウム塩とすることで 21b-21d をそれぞれナトリウム塩として 得た.

ラセミ体のブロモフルオロ酢酸はキラルなフェネチルアミンを用いたジアステレオマー塩 分割によって光学分割できることが報告されている. ^{[7], [8]} そこで,光学活性なブロモフルオ ロ酢酸エチル^[7] 22d を合成し,これを用いて 20d の立体選択的な合成を試みた (Scheme 1-8). 6 位にキラルなフルオロ酢酸構造をもった ETX0282 の合成法^[7]に従って,0°C にて塩基とし て DBU を用いて反応を行うと,顕著なラセミ化を伴うことなく立体反転で置換反応が進行 し,20d を単一の異性体として合成することができた. なお,本反応が S_N2 機構で進行する ことは,同様の反応条件によって合成した化合物 119 の X 線結晶構造にて確認した (Figure 1-5). ^[17]

Scheme 1-7. Synthesis of Sulfone-Type BLI 21a-21d^a

^{*a*}Reagents and conditions: (a) 4-nitorobenzyl 2-iodoacetate (**22a**), ethyl 2-bromo-2,2-difluoroacetate (**22b**), or ethyl 2-bromo-2-fluoroacetate (**22c**), K₂CO₃, DMF, rt, 42–47%; (b) Pd/C, H₂ (1 atm), then NaHCO₃, DMF, 0 °C, quant for **21a**; (c) NaOH, THF/H₂O, 0 °C, 79–92% for **21b–21d**.

Scheme 1-8. Stereoselective Synthesis of 20d

Figure 1-5. X-ray structure of compound 119. Thermal ellipsoids are set at 30% probability.

第4節 スルホキシド型 BLI の合成

続いてスルホキシド誘導体の合成を行った (Scheme 1-9). スルフィド 2b を-78 °C, ジク ロロメタン溶媒中, 1.1 eq.の *m*-CPBA で酸化したところ, スルホキシド 23 が良好な収率で得 られた. スルホキシドの合成においては, 2 種類のジアステレオマーが生成する可能性がある が,本反応においては立体選択性も良好であった (dr = 91/9). なお,ジアステレオマー比は ¹H NMR の積分比から決定している. 得られた 23 の相対立体配置は,X 線結晶構造解析から 決定した (Figure 1-6A).^[9] また,ここで得られたスルホキシド 23 は近年メディシナルケミ ストリーの分野で注目を集めている置換基であるスルホキシイミン 24 にも誘導できること が確認できた.^{[10],[11]}

立体選択的にスルホキシドへの酸化反応が進行した理由は以下の様に考察している (Figure 1-6B). すなわち, Me 基の立体反発および,硫黄原子と1位の窒素原子上の孤立電子対の 静電的な反発によって, 2b は Figure 1-6B に示すような安定配座をとると考えられる. この配 座において,硫黄原子上の立体障害の影響を受けにくい側の孤立電子対が *m*-CPBA による酸 化を受けることで, 23 が立体選択的に得られたと考察している.

Scheme 1-9. Oxidation to Sulfoxide 23 and Sulfoximine 24

Figure 1-6. (A) X-ray structure of sulfoxide 23. Thermal ellipsoids are set at 30% probability.(B) Presumable mechanism for diastereoselective oxidation of sulfide 2b.

続いて, 23 の脱 Bn 化を検討した (Table 1-2). スルホン体 9b においては,特に問題なく Pd/C 触媒を用いて脱 Bn 化が進行したが (Scheme 1-5), 23 においてはスルホキシドが触媒毒 として働くためか Pd/C や Pd(OH)₂ を単独で用いた条件では反応がほとんど進行しなかった (entries 1 and 2). 一方で,DBO 誘導体であるレレバクタムの合成において,触媒量の DABCO を添加することで Bn 基の脱保護が促進されることが報告されている.^[12] この条件における DABCO の役割は明らかにはなっていないものの,アミノ酸等,DBO 骨格以外の基質を用いた場合にもその効果が確認されており,スルホキシドをもった基質に対しても反応を促進す ることができるのではないかと考えた.そこで,この条件を本反応へ応用したところ,Pd/C と DABCO の組み合わせでは依然として反応は進行しなかったものの (entry 3), Pd(OH)₂と組 み合わせた条件では反応がスムーズに進行し,収率良く目的の脱 Bn 体 25 を得ることができ た (entry 4).

脱 Bn 化の問題を解決できたために、目的のスルホキシドタイプの BLI 27 に向かって合成 を進めた (Scheme 1-10). しかしながら、化合物 25 から目的の BLI 27 の合成においては、ス ルホン体 10b と同様の SO₃-pyridine 条件 (Scheme 1-5) では目的物を得ることができなかった. この条件においては、基質である 25 の消失が確認されるため、SO₃-pyridine が 2 位のスルホ キシドを活性化することで 25 が分解したものと推測している. 一方で、試薬としてクロロ硫 酸エステル 28 を用いると、スルホキシドではなくヒドロキシルアミン選択的に 25 と反応し、 目的の硫酸エステル体 26 を得ることができた. 硫酸エステル 26 のネオペンチル位をナトリ ウムチオラート 29 で求核置換することで、27 が良好な収率で得られ、目的の 2 位にスルホ キシド基をもった BLI の合成を達成できた. また、スルホンタイプと同様の条件 (Scheme 1-7) にて、6 位カルボン酸タイプの 31、33 も合成した (Scheme 1-11). ここでは、キラルなブ ロモフルオロ酢酸エステルとして、エチルエステル 22d より沸点が高く取り扱いが容易なベ ンズヒドリル (Bzh) エステル 22e を用いている.

Scheme 1-10. Synthesis of Sulfoxide-Type BLI 27

Scheme 1-11. Synthesis of Sulfoxide-Type BLI 31 and 33

目的としていたスルホキシド型 BLI 27 が合成できたため,異なる側鎖をもった誘導体の合成も行った.アミドをもった BLI 39 の合成法を以下に示す (Scheme 1-12). チオスルホネート 40 を用いた脱炭酸的ラジカル反応で 34 を得た後,スルホキシドへと酸化し 35 を合成した.スルホキシドへの酸化におけるジアステレオ選択性は dr = 88/12 であり,側鎖メチル基の場合と同程度であった.また,側鎖を先にアミドへと変換してから酸化するとジアステレオ選択性の低下が確認されたため (dr = 55/45),先にスルホキシドへと酸化した後に,'Bu エステルを脱保護し、アミド 37 へと変換している. DABCO を添加した水素添加反応条件において Bn 基を脱保護した後,Scheme 1-10 と同様に硫酸エステル 38 を経由して,目的の BLI 39 を合成した.

第5節 スルホンアミド型 BLI の合成

ここまで2位への硫黄置換基導入に用いてきた脱炭酸的ラジカル反応は、スルフィドのみ ならずチオスルホネートを介したスルホンアミドの合成にも応用できることが報告されてい る (Scheme 1-13).^[13] すなわち、過剰の SO₂存在下、光照射によって Barton エステルから生 じたアルキルラジカルは SO₂によってトラップされ、スルホニルラジカルを生成する.この スルホニルラジカルが Barton エステルのチオピリドン構造と反応することで、新たなアルキ ルラジカルが生じるとともに、チオスルホネートが生成する.得られたチオスルホネートは、 アンモニアの存在下、1,2-ジブロモ 1,1,2,2-テトラクロロエタンのようなハロゲン化試薬と反 応することで、スルホニルハライドを経由してスルホンアミドへと変換できる.

Scheme 1-13. Synthesis of Sulfonamide from Carboxylic Acid via Thiosulfonate Derived from Photo-Induced Decarboxylative Thiolation

そこで、本反応を応用してスルホンアミドを有する DBO 誘導体の合成を試みた (Scheme 1-14). 報告例と同様の条件で、カルボン酸 1 を Barton エステルに変換後、白色 LED 照射下、 -10 °C にて過剰量の SO₂ と反応させたところ、37%収率にて目的のチオスルホネート 42 を 得た. このチオスルホネート 42 をアンモニア存在下、1,2-ジブロモ 1,1,2,2-テトラクロロエタ ンと反応させ、スルホンアミドへの変換を試みた. しかしながら、得られたスルホンアミド は目的の相対配置を持った 43a ではなく、2 位がエピ化した 43b が主生成物であり、crude の 'H NMR から算出した 43a と 43b の比率は、43a / 43b = 28 / 72 であった. さらに、主生成物 である 43b の単離収率もわずか 6.5% と非常に低い結果となった.なお、チオスルホネート 42, および、スルホンアミド 43b の相対配置は NOESY によって確認している (実験の部: p.97, 99).

目的の 43a ではなく,2 位がエピ化した 43b が得られた理由は以下のように考えている (Scheme 1-15). すなわち,チオスルホネート 42 からスルホンアミドへの変換においては,ア ンモニアの求核攻撃によってチオスルホネート 42 からスルフィン酸 44 が生成した後,スル ホニルハライド 45 へと酸化され,これがアンモニアと反応していると考えられる.アンモニ アとの反応時には,スルホニルハライド 45 からα位の脱プロトン化が進行したスルフェン 46 が反応活性種であると考えられるが,この時点で2 位の立体情報が消失してしまう.スルフ ェンがアンモニアと反応すると 2 位にアニオンが生じ,このアニオン 47 が convex 面からプロトン化されることでエピ体 43b が主生成物として得られたと考察している.

43a / **43b** = 28 / 72(determined by ¹H NMR of the crude mixture)

前述の考察より、スルホニルハライドを経由せずにスルホンアミドへと変換できれば、目的の立体化学を持った 43a が選択的に得られると考えた.そこで、チオスルホネート 42 をPhSNa と反応させることでスルフィン酸 48 を遊離させ、H2NOSO3H を用いて求電子的にアミノ化を行ったところ、目的のスルホンアミド 43a を単一の異性体として得ることができた (Scheme 1-16). 43a の相対配置も同様に NOESY によって確認している (実験の部: p.98).

Scheme 1-16. Conversion of Thiosulfonate 42 to Sulfonamide 43a without Epimerization at the C2 Position

スルフィン酸 48 の求電子的アミノ化反応によって目的のスルホンアミド体が得られるこ とが分かった.しかしながら,スルフィン酸 48 の前駆体であるチオスルホネート 42 の合成 において,有害な気体である二酸化硫黄を過剰量使う必要があったため (Scheme 1-14),より 良い合成ルートの検討を行った (Scheme 1-17).合成ルートの改良にあたっては,アセチル基 の脱保護で生じるヒドロキシメチル基からの脱離によってスルフィン酸 48 を生じるアセト キシメチルスルホン^[14]50 をスルフィン酸 48 の前駆体に設定し,ルート検討を行った.カル ボン酸 1 を脱炭酸的ラジカル反応にてチオスルホネート 52 と反応させることで,アセトキシ メチル基を持ったスルフィド 49 へと変換し,*m*-CPBA による酸化によってスルフィン酸前駆 体 50 を合成した.化合物 50 のアセチル基を加水分解条件で脱保護すると,生じたヒドロキ シメチル基からスルフィン酸 48 が遊離し,続く求電子的アミノ化でスルホンアミド 43a を得 た.化合物 43a は Pd/C 条件における 6 位の脱 Bn 化と,続く SO₃-pyridine による硫酸化によ って,2 位にスルホンアミドをもった DBO 型 BLI 51 へと変換した.

Scheme 1-17. Toxic SO₂-Free Synthetic Route to Sulfonamide-Type BLI 51

さらに、43a のスルホンアミドを Boc 化した後、光延条件でアルキル化することで N-メチル化が可能であった (Scheme 1-18). メチル化された化合物 54 は、AlCl₃を用いた脱 Boc 化と続く脱 Bn 化、硫酸化によって BLI 56 へと導いた.また、55 を再び光延条件にてメチル化することでジメチル化された 57 に誘導することができ、56 と同様の条件にて BLI 58 を得た.

光延反応だけでなく, アルキルハライドを用いた条件でも Boc 体 53 のアルキル化は可能で あり, 塩基として K₂CO₃ を用いた 2-ヨードアセトアミドとの反応でアルキル化体 59 を得る ことができた (Scheme 1-19). 化合物 59 は同様の方法で BLI 61 へと誘導した.

スルホンアミド型においても6位カルボン酸タイプの合成を行った (Scheme 1-20). 2位ス ルホンアミドが無保護の43aやモノBoc体53の6位を脱Bn化してアルキル化を試みたが, 6位のアルキル化だけでなく,2位のスルホンアミドのアルキル化も併発してしまい収率が低 下した.そこで,53のスルホンアミドNHをジメトキシベンジル (DMB) 基で保護してから (工程 a),6位の脱Bn化とアルキル化によって酢酸ユニットを導入し,ジフルオロ酢酸体 63およびフルオロ酢酸体66を得た(工程 b,c).キラルなブロモフルオロ酢酸22dを用いる 場合には,前述の通り,0℃にて塩基としてDBUを用いることで,顕著にラセミ化すること なくフルオロ酢酸ユニットを導入できるが(Scheme 1-13),温度を-20℃にコントロールす ることで塩基としてK₂CO₃を用いた場合にもラセミ化を抑制してフルオロ酢酸を導入するこ とができた(工程 c).得られた63および66は,AlCl₃を用いてBoc基とDMB基を一挙に 脱保護した後(工程 d),エチルエステルの加水分解によって最終物65および68へと誘導し た(工程 e).

Scheme 1-20. Synthesis of Sulfonamide-Type BLI 65 and 68^a

^{*a*}Reagents and conditions: (a) 2,4-dimethoxybenzylalcohol, DMEAD, PPh₃, THF, rt, 89%; (b) (i) H₂ (1 atm), Pd/C, MeOH, rt, (ii) **22b**, K₂CO₃, DMF, rt, 75% for **63**; (c) (i) H₂ (1 atm), Pd/C, MeOH, rt, (ii) **22d**, K₂CO₃, DMF, -20 °C, 55% for **66**; (d) AlCl₃, anisole, CH₂Cl₂, -30 to 0 °C, 68-91%; (e) NaOH, THF/H₂O, 0 °C, 82–88%

第6節 スケールアップ合成

一般的に,光反応は量子収率や反応制御の観点からスケールアップ合成に課題があり,flow reactor 等の特殊な装置を使う必要があるケースが多い.^[15] 一方で,今回用いた Barton エス テルを経由する脱炭酸的ラジカル反応はラジカル連鎖反応であり,^[16] 量子収率の観点からは 一般的なバッチ合成設備でスケールアップが可能であると考えられた.また,連鎖反応にお いては反応の制御も問題となるが,別途,遮光条件にて調製した Barton エステルの溶液を,送液ポンプを用いて光照射されている反応容器に滴下していくことで,反応の制御が可能で あると考えた.

実際に600gのカルボン酸1を用いたスケールアップ合成の例を以下に示す (Scheme 1-21). カルボン酸1から遮光条件にてBarton エステル3を調製し,あらかじめPhSSMe (5b) が投入 されている反応容器へ,氷冷下,光照射しながらBarton エステル3の溶液を送液ポンプにて 滴下した.滴下速度を調整し、内温を10°C以下に保つことで反応の制御が可能であり,反 応の成績体2bを得ることができた.第2節で述べた通り,スルフィド2bはシリカゲルに対 して不安定であるため,crudeのままスルホキシドへと酸化し,カラムクロマトグラフィーに よる精製後,EtOAc中から結晶化させることで,収率34%(dr=31/1)で23を219g得ること ができた.スルフィド2bを単離せずにスルホキシド23へと酸化したが,顕著な収率やジア ステレオ選択性の低下は観察されなかった.

Scheme 1-21. Scale-up Synthesis of Sulfoxide 23

第7節 本章のまとめ

本章では2位に硫黄置換基をもった新規 DBO 誘導体の合成法を開発した (Figure 1-7).入 手性の良いカルボン酸 1を出発物質とし,Barton エステルを経由する脱炭酸的ラジカル光反 応によって,酸や塩基,熱に対して不安定な DBO 骨格を維持したまま,2位のカルボキシル 基をスルフィドに変換することに成功した.本反応において,アルキルスルフィドの合成は 芳香族のものと比較して収率が低く,必要な試薬量が多い傾向にあったが,-SR 源の試薬を 非対称ジスルフィドやチオスルホネートへと変更することで,より効率的にアルキルスルフ ィドを合成できることを見出した.こうして合成が確立された2位スルフィド体から各種変 換を行うことで,2位にスルホン,スルホキシド,スルホンアミドをもった DBO 型 BLI の合 成を達成した.

Figure 1-7. Variation of 2-thio-substituted DBO-type BLIs derived from commercially available carboxylic acid **1**.

参考文献(第1章)

- Ball, M.; Boyd, A.; Ensor, G. J.; Evans, M.; Golden, M.; Linke, S. R.; Milne, D.; Murphy, R.; Telford, A.; Kalyan, Y.; Lawton, G. R.; Racha, S.; Ronsheim, M.; Zhou, S. H. Development of a Manufacturing Route to Avibactam, a β-Lactamase Inhibitor. *Org. Process Res. Dev.* 2016, 20, 1799–1805.
- Barton, D. H. R.; Bridon, D.; Zard, S. Z. The Invention of New Radical Reactions. Part XIII. High Yielding Decarboxylative Chalcogenation of Aliphatic and Alicyclic Acids. *Heterocycles* 1987, 25, 449–462.
- Ashton, M. J.; Lawrence, C.; Karlsson, J. A.; Stuttle, K. A. J.; Newtin, C. G.; Vacher, B. Y.; Webber, S.; Withnall, M. J. Anti-inflammatory 17β-Thioalkyl-16α,17α-ketal and -acetal Androstanes: A New Class of Airway Selective Steroids for the Treat-ment of Asthma. *J. Med. Chem.* **1996**, *39*, 4888–4896.
- Barton, D. H. R.; Crich, D.; Motherwell, W. B. The Invention of New Radical Chain Reactions. Part VIII. Radical Chemistry of Thiohydroxamic Esters; A New Method for The Generation of Carbon Radicals from Carboxylic Acids. *Tetrahedron* 1985, *41*, 3901–3924.
- 5) Ledoussal, B.; Gourdel, M. E. Azabicyclic Compounds, Preparation Thereof and Use of Same as Drugs, Especially Beta-Lactamase Inhibitors. WO2009133442.
- 6) Miller, A. A.; Shapiro, A. B.; McLeod, S. M.; Carter, N. M.; Moussa, S. H.; Tommasi, R.; Mueller J. P. In Vitro Characterization of ETX1317, a Broad-Spectrum β-Lactamase Inhibitor That Restores and Enhances β-Lactam Activity against Multi-Drug-Resistant Enterobacteriales, Including Carbapenem-Resistant Strains. *ACS Infect. Dis.* 2020, *6*, 1389–1397.
- 7) Durand-Réville, T. F.; Comita-Prevoir, J.; Zhang, J.; Wu, X.; May-Dracka, T. L.; Romero, J. A. C.; Wu, F.; Chen, A.; Shapiro, A. B.; Carter, N. M.; McLeod, S. M.; Giacobbe, R. A.; Verheijen, J. C.; Lahiri, S. D.; Sacco, M. D.; Chen, Y.; O'Donnell, J. P.; Miller, A. A.; Mueller, J. P.; Tommasi, R. A. Discovery of an Orally Available Diazabicyclooctane Inhibitor (ETX0282) of Class A, C, and D Serine β-Lactamases. *J. Med. Chem.* **2020**, *63*, 12511–12525.
- 8) Boussac, H.; Crassous, J.; Dutasta, J. P.; Grosvalet, L.; Thozet, A. Resolution and absolute configuration of bromofluoroacetic acid. *Tetrahedron: Asymmetry* **2002**, *13*, 975–981.
- 9) CCDC Deposition Number: 1993055.
- 10) Lücking, U. Sulfoximines: A Neglected Opportunity in Medicinal Chemistry. *Angew. Chem. Int. Ed.* **2013**, *52*, 9399–9408.
- 11) Okamura, H.; Bolm, C. Rhodium-Catalyzed Imination of Sulfoxides and Sulfides: Efficient Preparation of *N*-Unsubstituted Sulfoximines and Sulfilimines. *Org. Lett.* **2004**, *6*, 1305–1307.
- 12) Yin, J.; Weisel, M.; Ji, Y.; Liu, Z.; Liu, J.; Wallace, D. J.; Xu, F.; Sherry, B. D.; Yasuda, N. Improved Preparation of a Key Hydroxylamine Intermediate for Relebactam: Rate Enhancement of Benzyl Ether Hydrogenolysis with DABCO. *Org. Process Res. Dev.* **2018**, *22*, 273–277.
- Barton, D. H. R.; Lacher, B.; Misterkiewicz, B.; Zard, S. Z. The Invention of Radical Reactions. Part XVII. A Decarboxylative Sulphonylation of Carboxylic Asids. *Tetrahedron* 1988, 44, 1153– 1158.
- 14) Ranatunge, R. R.; Augustyniak, M.; Bandarage, U. K.; Earl, R. A.; Ellis, J. L.; Garvey, D. S.; Janero, D. R.; Letts, L. G.; Martino, A. M.; Murty, M. G.; Richardson, S. K.; Schroeder, J. D.;

Shumway, M. J.; Tam, S. W.; Trocha, A, M.; Young, D. V. Synthesis and Selective Cyclooxygenase-2 Inhibitory Activity of a Series of Novel, Nitric Oxide Donor-Containing Pyrazoles. *J. Med. Chem.* **2004**, *47*, 2180–2193 .

- 15) Beatty J. W.; Douglas, J. J.; Miller, R.; McAtee, R. C.; Cole, K. P.; Stephenson, C. R. J. Photocemical Perfluoroalkylation with Pyridine *N*-Oxides: Mechanistic Insights and Performance on a Kilogram Scale. *Chem* **2016**, *1*, 456–472.
- 16) Aveline, B. M.; Kochevar, I. E.; Redmond, R. W. Photochemistry of *N*-Hydroxypyridine-2-thione Derivatives: Involvement of the 2-Pyridylthiyl Radical in the Radical Chain Reaction Mechanism. *J. Am. Chem. Soc.* **1995**, *117*, 9699–9708.
- 17) CCDC Deposition Number: 2195413

第2章 2位に硫黄官能基を有する 1,6-ジアザビシクロ[3.2.1]オクタン誘

導体の活性・動態評価

第1節 2位の構造活性相関

前章で合成したジアザビシクロオクタン (DBO) 誘導体のβ-ラクタマーゼ阻害剤 (BLI) としてのポテンシャルを確認するために, β-ラクタマーゼ阻害活性 (IC₅₀), および, β-ラク タム系抗菌薬との併用効果を評価した. IC50は、セファロスポリンに色素原を結合させた人工 基質ニトロセフィンを用い, β-ラクタマーゼによるニトロセフィンの分解に伴って遊離した 色素の吸収波長 (492 nm) 観測することで算出した. 共有結合性の阻害剤の評価においては, β-ラクタマーゼと阻害剤をプレインキュベーションする条件等によってIC50の値が異なる可 能性があり,阻害活性の指標として IC50を用いることは必ずしも適切ではない.しかしなが ら、注意深く条件を設定することで簡便におおまかな阻害剤のポテンシャルを評価できる方 法として有用であり、広く用いられている. □ 今回は阻害活性を過大評価することが無いよ う, BLI と β-ラクタマーゼをプレインキュベーションせずに評価を実施した. (共有結合性 の BLI の場合, プレインキュベーションによって, あらかじめラクタマーゼを阻害しておく ことで, プレインキュベーションなしの場合と比較して IC50の値が小さくなる場合がある.) β-ラクタム系抗菌薬との併用効果の評価にあたっては、β-ラクタムとして経口セフェムで あるセフィキシム (CFM)を用い、4 µg/mLの BLI存在条件における CFM の最小発育阻止濃 度 (MIC) を測定し, BLI 非存在下の MIC からの回復の程度を指標として, BLI のポテンシャ ルを確認した.

各種評価結果を以下に示す (Table 2-1). 酵素阻害活性においては、スルホン (11a-11d)、お よび、スルホキシド (27,39) はアビバクタム (AVI) と同等以上であり、特にスルホンは KPC-2 および CMY-2 に対する IC₅₀ の顕著な改善が確認された. 一方で、スルホンアミド (51-61) は、KPC-2 および CMY-2 に対する活性は同等であるものの、CTX-M-15 に対する阻害活性が AVI と比較して減弱傾向にあった. 程度の差はあるものの、官能基の種類(スルホン、スル ホキシド、スルホンアミド)が同じであれば、側鎖が異なる場合でも、酵素阻害活性の強さ の傾向は類似していた.

また、CFM の抗菌活性を回復させる効果については、BLI が存在しない条件では MIC>32 μ g/mL である2つの β -ラクタマーゼ産生株において、優位に CFM の抗菌活性を回復させており、11a を除く全ての化合物においてその効果は AVI 以上であった.一方で、CFM との併用効果は必ずしも酵素阻害活性 (IC₅₀) と連動する結果とはならなかった.第1章第1節で述べた通り、グラム陰性菌は外膜という特徴的な膜に覆われており、薬剤が効果を発揮するためにはこの外膜を透過する必要がある.^[2] 親水性の抗菌薬は、ポーリンと呼ばれるタンパク質で形成された透過孔を通って外膜を透過することが知られており、AVI もいくつかのポーリンを経由して外膜を透過することが報告されている.^[3] また、 β -ラクタム系抗菌薬において、外膜の透過速度は分子の大きさや脂溶性と関わっており、より小さく親水性の高い構造が好まれることも知られている.^[4] このような観点から結果を見ると、11a は IC₅₀ がほぼ同程度の他のスルホンタイプ (11b–11d) と比較して CFM との併用効果が低いが、これは分子量が大きく、脂溶性が高いために、十分な外膜透過性を得られなかったためであると考え

られる. また, 2位の官能基の種類によって IC₅₀の傾向が類似しているが,同じ種類の官能基 であるスルホンタイプ (11b–11d) やスルホンアミドタイプ (51–61)の間で比較すると,それ ぞれのタイプの中で最も分子量の小さい 11b および 51 が最も効果的に CFM の抗菌活性を回 復させている. ただし,11b と 51 はβ-ラクタマーゼ阻害活性だけでなく,比較的強い抗菌活 性 (MIC)をもっているために,この抗菌活性の効果が上乗せされて高い併用効果が観察され ている可能性を考慮する必要がある(Table 2-1 カッコ内の値).スルホンアミド 51–61 にお いては, CTX-M-15 に対する阻害活性が AVI と比較して減弱しているにもかかわらず, CTX-M-15 産生株 SR34100 における CFM との併用効果は AVI を上回るものであった.この理由は 定かではないが,スルホンアミド系の置換基は AVI のもつアミド構造よりも外膜透過性の観 点で優れている可能性がある.

^{*a*}Blue: \geq 8-fold reduction compared to AVI, Red: \geq 8-fold increase compared to AVI. AVI: avibactam. CFM: cefixime. ^{*b*}N = 1 determination. The values of IC₅₀ were determined without enzyme-inhibitor preincubation. ^{*c*}N = 1 determination. ^{*d*}Strain ID. ^{*e*}Expressed β -lactamase on each strain. ^{*f*}Calculated as a free form. ^{*g*}MIC of BLL. ^{*h*}MIC of CFM alone.

第2節 6位の構造活性相関

続いて、2位をメチルスルホンに固定して、6位の変換による活性の変化を確認した(Table 2-2).6位のスルホン酸(11b)を酢酸構造に変換するとIC₅₀は大きく減弱した(21a).しかしながら、カルボン酸のα位に電子求引性基であるフッ素を導入したジフロロ酢酸構造へと変換すると、スルホン酸型(11b)と遜色ない活性を示すことが分かった(21b).また、フッ素を一つ削減したモノフルオロ酢酸構造へと変換すると、2つの立体異性体の内、R体(21d)においてジフロロ酢酸体(21b)と同等の活性を示した.6位を硫酸構造からフルオロ酢酸に変換しても強力なβ-ラクタマーゼ阻害活性を示す例として、ETX1317の報告がある.^{[6],[9]}この例においても、フルオロ酢酸の立体化学がR体の方が活性が強いことが報告されており、今回の傾向と一致している.6位をスルホン酸からフルオロ酢酸へ変換すると分子量の大きな変化はないものの、clogPは上昇する傾向にある.しかしながら、β-ラクタマーゼ産生菌に対するセフィキシム(CFM)の抗菌活性回復効果についても、ジフルオロ酢酸 21b および R体のフルオロ酢酸である 21d は、強力な IC₅₀値を反映して、6位スルホン酸体 11b と同等の効果を示した.このことから、6位のスルホン酸からフルオロ酢酸への変換は、clogPの上昇はあるものの、分子の外膜透過性に大きな影響を及ぼさないことが示唆された.

	R ² =	0,0 \∕S [`] 0 [−] Na ⁺		O Na X	F F O Na ⁺			
		11b	21;	a	21b	21c	21d	
			$\mathrm{IC}_{50}~(\mu\mathrm{M})^b$			MIC ($\mu g/mL$) of CFM in the presence of 4 $\mu g/mL$ of BLI ^c		
comp.	Mw ^f	clogP ^f	KPC-2 (class A)	CTX-M-15 (class A)	CMY-2 (class C)	K. pneumoniae ATCC-BAA-1705 ^d KPC-2 ^e	<i>E. coli</i> SR34100 ^d CTX-M-15 ^e	
11b	300	-1.65	0.004	0.017	0.003	$0.125(16)^{g}$	≤0.031 (4) ^g	
21a	278	-0.46	0.536	2.24	1.05	no data	no data	
21b	314	0.99	0.007	0.022	0.042	$0.25 (32)^{g}$	≤0.031 (8) ^g	
21c	296	-0.39	0.217	0.378	1.06	0.5 (no data) ^g	1 (no data) g	
21d	296	-0.39	0.031	0.055	0.042	$0.25 (32)^{g}$	≤0.031 (8) ^g	
AVI	265	-1.63	0.072	0.013	0.059	1 (32) ^g	1 (16) ^g	
alone	-	-	-	-	-	$>32^{h}$	$> 32^{h}$	

^{*a*}Blue: \geq 8-fold reduction compared to AVI, Red: \geq 8-fold increase compared to AVI. AVI: avibactam. CFM: cefixime. ^{*b*}N = 1 determination. The values of IC₅₀ were determined without enzyme-inhibitor preincubation. ^{*c*}N = 1 determination. ^{*d*}Strain ID. ^{*e*}Expressed β -lactamase on each strain. ^{*f*}Calculated as a free form. ^{*g*}MIC of BLI. ^{*h*}MIC of CFM alone.

アビバクタム (AVI) の6位硫酸構造をジフルオロ酢酸に変換した化合物は,比較的強いβ-ラクタマーゼ阻害活性を有し,セフタジジム (CAZ) の抗菌活性を十分に回復させることが報告されている (Table 2-3).^[5] 一方で,ジフルオロ酢酸構造をモノフルオロ酢酸に変換すると,酵素阻害活性、および, CAZ の抗菌を回復させる効果が減弱することも併せて報告されており,2位がアミドの場合には,2位にスルホンを有する21dと異なり,6位モノフルオロ酢酸構造で強力な活性を示すことは困難である.

Table 2-3. Reported IC₅₀s and Restoration of MICs of DBO Derivatives Pocessing Acetic Acid Moiety at the 6-Position^[5]

	IC ₅₀ (μM)			MIC (μ g/mL) of CAZ in the presence of 4 μ g/mL of BLI					
comp.	TEM-1 (class A)	P99 (class C)	$E. \ coli$ $250BE6^a$ $TEM-3^b$	<i>Е. cloacae</i> 293НТ6 ^a Р99, АтрС ^b	E. cloacae 293HT4 ^a AmpC ^b	C. freundii 261GR6 ^a AmpC ^b			
ex. 1	0.72	54	2	>32	>32	>32			
ex. 2 ^c	0.002	4.6	0.25	8	8	4			
ex. 3	0.0008	2.2	0.25	1	0.5	1			
alone	-	-	$>32^{d}$	$>32^{d}$	$>32^{d}$	$>32^{d}$			

CAZ: ceftazidime. ^{*a*}Strain ID. ^{*b*}Expressed β -lactamases on each strain. ^{*c*}Mixture (1:1) of the two diastereomers on fluorine stereochemistry. ^{*d*}MIC of CAZ alone.

また、DBO 骨格 3 位と 4 位の間に二重結合を導入した ETX1317 においては、6 位モノフル オロ酢酸構造で強い β -ラクタマーゼ阻害活性、および、 β -ラクタム系抗菌薬の抗菌活性回復 効果を示すことが報告されている (Table 2-4).^[6] この理由は、二重結合の導入によって分子 のひずみが増大し、DBO が β -ラクタマーゼの活性中心のセリンを反応しやすくなったため だと考えられる. 今回、2 位へスルホンを導入したことで DBO 骨格の反応性が向上し、母核 に二重結合を導入した場合と同等の β -ラクタマーゼ阻害活性に対する効果が観測されたと 言える.

Table 2-4. Reported IC₅₀s and Restoration of MICs of ETX1317^[6]

		IC ₅₀ (µM)		MIC (µg/mL) of CFM in the presence of ETX1317 at a fixed 1:2 ratio (CFM:ETX1317)		
comp.	KPC-2 (class A)	CTX-M-15 (class C)	AmpC (class C)	<i>E. coli</i> ARC6074 ^{<i>a</i>} AmpC, KPC-3 ^{<i>b</i>}	K. pneumoniae ARC6100 ^a KPC-2, TEM-1, SHV-11 ^b	
ETX1317	0.043	0.002	0.16	0.13	0.25	
alone	-	-	-	32^{c}	>64°	

CFM: cefixime. ^aStrain ID. ^bExpressed β-lactamases on each strain. ^cMIC of CFM alone.

第3節 臨床分離株に対する有効性

2位に硫黄置換基をもった複数のDBO 誘導体がBLIとして優れた有効性を示すことが分かったため、多様な臨床分離株に対する有効性の評価結果を行った(Table 2-5). 全体的な傾向としては、今回テストした大部分の菌株に対して、2位に硫黄置換基をもったDBO 誘導体はアビバクタム(AVI)より優れた有効性を示し、特にSR200030,SR09603,SR200487に対して併用効果の差が顕著であった.一方で、SR201218のようにAVIと比較して併用効果がやや減弱する菌株も存在することが認められた.

また,硫黄官能基の種類に応じて,セフィキシム (CFM) の抗菌活性回復効果における菌株 間の傾向が異なることが観察された. 例えば, OXA-48 と CTX-M-15 を産生する SR201218 に 対して,スルホン (11c,11d),および,スルホンアミド (56,58) は,BLI存在下の CFM の抗 菌活性は,MIC = 2–16 μg/mL と AVI よりも低い併用効果を示す一方で,スルホキシド (27, 39) は,MIC=0.5 μg/mL と AVI と同等の併用効果を示した. これは,CTX-M-15 に対する阻 害活性がスルホン (11c,11d),および,スルホンアミド (56,58) と比較して,スルホキシド (27,39) の方が強力であるためだと考えられる (Tabel 2-1 参照).

側鎖に着目すると、スルホン、スルホキシドにおいては、シンプルな側鎖 (11b,27) が優れ た BLI ポテンシャルを示した.後述の通り、これらの化合物は、化合物自身が比較的強い抗 菌活性を持っていることも考慮しなければならないが (Table 2-6 参照)、分子量が小さいこと が外膜透過性に有利であったことが影響していると考えている.また、スルホンアミドにお いては、最もシンプルな 51 と比較して N-Me 化された 56 の方が、SR200030 や SR09603、 SR200487 といったいくつかの株に対して優れた併用効果を示した.スルホンアミド 51 と 56 のβ-ラクタマーゼ阻害活性を比較すると、KPC-2 と CMY-2 に対しては 56 の方が強い阻害活 性を有している (Table 2-1).今回の評価に用いた株が産生する全てのβ-ラクタマーゼに対す る阻害活性を評価しているわけではないが、スルホンアミド 56 は多くのβ-ラクタマーゼに 対して 51 よりも阻害活性が強く、これが菌株に対する CFM の抗菌活性回復効果につながっ ている可能性がある.

複数の臨床分離株に対しても、6位フルオロ酢酸タイプの21b、21dは6位硫酸タイプ11b と遜色のない有効性を示した.一部の菌株に対し、21bより21dの方が有効性が高いのは、 脂溶性がより低いことが外膜透過性に有利に働いたためであると考察している.

Table 2-5. MICs of CFM against Selected Clinical Isolates in the Presence of BLI^a

21b

			MIC ($\mu g/mL$) of C			FM	
species	strain ID	characteristics ^b	in the presence of 4 μ g/mL of BLI ^c				
			11b	11c	11d	27	
K. pneumoniae	ATCC700603	SHV-18	0.063	0.25	0.25	0.125	
E. cloacae	SR200030	PER-2, ACT, ∆ompF	1	2	4	1	
E. cloacae	SR36276	AmpC	< 0.031	0.25	0.25	0.125	
K. pneumoniae	SR09635	DHA-1	< 0.031	0.25	0.25	0.25	
K. pneumoniae	SR09603	CMY-8 type	< 0.031	0.25	0.25	0.5	
K. pneumoniae	SR200263	OXA-48, CTX-M-1 group	< 0.031	0.125	0.25	0.063	
K. pneumoniae	SR201218	OXA-48, CTX-M-15	n.t. ^c	2	8	0.5	
K. pneumoniae	SR200487	VEB-8, CTX-M-15, SHV- 110, CMY-16, OXA-48, OXA-10	0.125	0.5	0.5	0.25	
) III (

			MIC (µg/mL) of CFM					
species	strain ID	characteristics ^b	in the presence of 4 μ g/mL of BLI ^c					
			39	51	56	58		
K. pneumoniae	ATCC700603	SHV-18	0.25	0.125	0.125	0.125		
E. cloacae	SR200030	PER-2, ACT, ∆ompF	1	4	1	16		
E. cloacae	SR36276	AmpC	0.25	0.25	0.063	0.5		
K. pneumoniae	SR09635	DHA-1	0.5	0.25	0.25	0.25		
K. pneumoniae	SR09603	CMY-8 type	4	1	0.25	0.5		
K. pneumoniae	SR200263	OXA-48, CTX-M-1 group	0.125	0.063	0.125	0.25		
K. pneumoniae	SR201218	OXA-48, CTX-M-15	0.5	n.t. ^d	2	16		
		VEB-8, CTX-M-15, SHV-						
K. pneumoniae	SR200487	110, CMY-16, OXA-48,	0.5	2	0.5	1		
		OXA-10						
					次ペー	ジへ続く		

			MIC (µg/mL) of CFM					
species	strain ID	characteristics ^b	in the presence of 4 μ g/mL of BLI ^c					
			21b	21d	AVI	alone		
K. pneumoniae	ATCC700603	SHV-18	0.125	0.63	0.5	16 ^e		
E. cloacae	SR200030	PER-2, ACT, ∆ompF	32	2	32	>32 ^e		
E. cloacae	SR36276	AmpC	0.5	0.25	2	>32 ^e		
K. pneumoniae	SR09635	DHA-1	< 0.031	< 0.031	1	>32 ^e		
K. pneumoniae	SR09603	CMY-8 type	< 0.031	0.063	32	>32 ^e		
K. pneumoniae	SR200263	OXA-48, CTX-M-1 group	< 0.031	n.t. ^d	0.5	>32		
K. pneumoniae	SR201218	OXA-48, CTX-M-15	n.t. ^d	n.t. ^d	0.5	>32		
K. pneumoniae	SR200487	VEB-8, CTX-M-15, SHV- 110, CMY-16, OXA-48, OXA-10	0.5	0.5	16	>32		

^{*a*}Blue: \geq 8-fold reduction compared to AVI, Red: \geq 8-fold increase compared to AVI. AVI: avibactam. CFM: cefixime. ^{*b*}The expressed β -lactamases and the deletion of porin on each strain. ^{*c*}N = 1 determination. ^{*d*}Not tested. ^{*e*}MIC of CFM alone.

第4節 DBO 誘導体自身の抗菌活性

これまで β -ラクタマーゼ阻害剤 (BLI) としての有効性について見てきたが、その中で本 DBO 誘導体自身が抗菌活性を有することが見えていた.そこで、これらの化合物が有する抗 菌薬としての性質についてもその詳細を調べることとした.各種菌株に対する MIC をまとめ た結果を以下に示す (Table 2-6). スルホン、スルホキシド、スルホンアミド、いずれの誘導 体においても一定の抗菌活性を示すものの、側鎖がかさ高くなることで活性が減弱する傾向 にあった (11b vs 11c, 51 vs 56).また、6位フルオロ酢酸タイプにおいても抗菌活性は維持し ていたことから (21b, 21d)、6位よりも2位の側鎖の構造が抗菌活性においては重要であるこ とが示唆された.さらに、DBO 誘導体では阻害できないメタロ- β -ラクタマーゼの一種であ る NDM-1 を産生する FAU に対しても抗菌活性を示したことから、これらの化合物はメタロ - β -ラクタマーゼに対して安定である可能性が示唆された.

他の DBO 誘導体としては、ナクバクタム (NAC)、および、ジデバクタム (ZID) が比較的 強い抗菌活性を持つことが知られている. AVI も含めこれらの化合物は、PBP2 (penicillin-binding protein 2) を選択的に阻害することで抗菌活性を示すことが報告されている.^{[7],[8]} このよ うな PBP2 選択的阻害剤は、菌種や菌株間でその抗菌活性が異なる場合が多いと言われてい るが、^[6] 今回評価した菌株セットにおいても、NAC や ZID は抗菌活性を示す株とそうでな いものの差が顕著であった.一方で、2位に硫黄置換基を導入した誘導体は、今回評価した全 ての株に対して活性を示す傾向にあり、抗菌活性の発現メカニズムが NAC、ZID と異なる可 能性が示唆された.

抗菌活性の発現メカニズムを検証する目的で、21bの PBP 選択性を確認した(Table 2-7). 実験としては、3つの異なる濃度(1,10,100 μ M)の21bで各種 PBP を処理したのちに、蛍 光標識されたペニシリンと反応させ、未反応の PBP を検出することで、各濃度における阻害 率を算出した.その結果、21bは PBP2 よりも PBP4、5/6 に対する親和性が高く、高濃度域に おいては全 PBP のサブタイプを阻害することが明らかとなった.これは、PBP2 を選択的に 阻害するというこれまでの DBO 誘導体とは大きく異なる PBP 選択性であり、非常に興味深 い知見であるとともに、本化合物を起点とした非 β -ラクタム系抗菌薬が開発できる可能性を 示唆するものである.

Table 2-6. MICs of 2-Thio-Substituted DBOs^a

R ¹ . N 0,0 0 N 0,5 0 S 0 ⁻	R ¹ = • Na	0 S 11	О /// b	0 Q H₂N 11c	O Sing	0 −S //// 27	C H₂N´	0 .S.,,/ 51	0,0 N ^S // H 56
	R ² =	= ı	F 0 21b	∔ Na ∿	E 0 21d	h + Na			
species]	MIC (µg/	mL) ^c			
β -lactamase ^b	11b	11c	27	51	56	21b	21d	NAC	ZID
<i>K. pneumoniae</i> ATCC700603 SHV-18	8	>32	8	8	>32	32	32	>32	>32
<i>E. coli</i> SR34100 CTX-M-15	4	>32	8	8	>32	8	8	2	1
<i>K. pneumoniae</i> ATCC-BAA-1705 KPC-2	16	>32	16	8	>32	32	32	2	1
<i>E. cloacae</i> SR36276 AmpC	8	>32	16	16	>32	16	8	2	1
<i>K. pneumoniae</i> SR09635 DHA-1	8	>32	8	16	32	8	8	>32	8
<i>K. pneumoniae</i> SR09603 CMY-8 type	8	>32	16	16	>32	8	16	>32	>32
<i>K. pneumoniae</i> FAU NDM-1	8	n.t. ^d	n.t. ^d	16	n.t. ^d	8	8	>32	>32

^{*a*}NAC: nacubactam. ZID: zidebactam. ^{*b*}Expressed β -lactamase on each strain. ^{*c*}N = 1 determination. ^{*d*}n.t. = not tested.

Table 2-7. PBP Inhibition Rate of 21b

		Inhibition rate $(\%)^a$						
concentration (µM)	PBP1	PBP2	PBP3	PBP4	PBP5/6			
1	2	11	9	62	37			
10	23	32	21	82	84			
100	69	72	86	92	98			

 $^{a}N = 1$ determination. Inhibition rates were determined by the relative fluorescence value of Bocillin FL penicillin after the incubation of membrane fraction with **21b**.

第5節 薬物動態

2位に硫黄置換基を有する DBO 誘導体のラットにおける PK (Pharmacokinetics) 評価を行った (Table 2-8). 2位の官能基別に比較すると,スルホン 11b とスルホキシド 27 はトータルク リアランス (CL_{tot}) が高かった. 化合物 11b においては,ラットの血漿中安定性が極めて低 く,この影響で高 CL となったと考えられる. 一方で,スルホンアミド 51 は,血漿中安定性 が他の誘導体と比較して良好であり,アビバクタムを含む既知の DBO 誘導体と同等の低い CL を示した.^{[9]-[11]} スルホンタイプにおいては,6位をジフルオロ酢酸 (21b) やフルオロ酢酸 (21b) においては,pH 7.0 リン酸 buffer 中においても不安定であることから,化学的に不安定であると考えられるが,21d は buffer 中では安定であることから,血 漿中に存在するエステラーゼ等の加水分解酵素によって化合物が分解されている可能性が示 唆された.

血漿中安定性が低い要因として加水分解酵素の関与が示唆されたため、血漿中安定性における種差を確認した (Table 2-9). その結果、本 DBO 誘導体はラットをはじめとする齧歯類においては不安定な傾向があったものの、ヒトを含む非齧歯類の血漿に対しては十分に安定であった. このことから、齧歯類の血漿中に含まれる加水分解酵素などの酵素の影響によって本 DBO 誘導体が分解されていることが確認された.

0,0 -N ₀ ,0 ⁺ 11b	0 0 0 0 0 0 0 0 0 0 0 0 0 0	H ₂ a ⁺	0,0 N ⁵ ,, N 0,0 N ₀ ,0 N ⁴ 51		Na^+
compound	AUC (μg∙h/mL)	T _{1/2} (h)	CL _{tot} (mL/min/kg)	rat serum stability (%) ^b	solution stability (%) ^c
11b	0.425	0.1	39.8	<1	44
27	0.188	0.2	88.7	no data	no data
51	0.953	0.2	17.6	58	51
21b	0.315	0.1	53.3	2	2
21d	n.c. ^d	n.c. ^d	n.c. ^d	<1	87

Table 2-8. PK of the DBOs in Rats after Intravenous Administration^a

^{*a*}AUC, area under the plasma concentration-time curve from time zero to infinity; $T_{1/2}$, apparent terminal elimination half-life; CL_{tot}, total clearance. Dose = 1 mg/kg. N = 2 determination. ^{*b*}Remaining amount in rat serum after 30 min incubation. ^{*c*}Remaining amount in pH 7.0 phosphate buffer at 40 °C after 16 h. ^{*d*}n.c. = not calculated because of its low stability in rat serum.

-					
		min incubation (%	6)		
compound	rat	mouse	dog	monkey	human
11b	<1	55	>99	94	89
51	58	94	>99	>99	90

 Table 2-9. Compound Stabilities in Serum

第6節 2位と6位の組み合わせ最適化

ラットも含めてすべての動物種の血漿中安定性が改善された化合物を見出すべく,2位と6 位の置換基の最適な組み合わせの探索を実施した(Table 2-10).前節の Table 2-8 で未実施で あった2位スルホキシドまたはスルホンアミドと6位フルオロ酢酸タイプの組み合わせを行 ったところ,6位ジフルオロ酢酸体(31,65)についてはbuffer中での化学的な安定性が低く, それと連動して血漿中安定性の低下とCLの増大が観測された.一方で,モノフルオロ酢酸 体(33,68)はbuffer中,血漿中ともに良好な安定性を示し,CLが低下した.

良好な PK プロファイルをもった化合物 33,および,68の活性を Table 2-11 に示す.スル ホキシド 33 は評価した 3 種類のβ-ラクタマーゼ全てに対して良好な阻害活性を示すととも に、これらのβ-ラクタマーゼ産生株に対してセフィキシム (CFM) と併用することで、CFM の抗菌活性を大きく回復させた.一方で、スルホンアミド 68 は、33 と比較すると酵素阻害活 性が弱く、CFM の活性回復効果も低かった.

これらの結果から,活性と動態の両立が可能である,2位スルホキシドと6位モノフルオロ酢酸が組み合わせられた化合物33をリードとして選抜した.第3章にてこの化合物の構造 最適化の詳細を述べる.

() 				$O_{\rm h2} O_{\rm h2} O$	H_2N	0 0 0 0 0 0 0 0 0 0
	comp.	AUC (μg∙h/mL)	T _{1/2} (h)	CL _{tot} (mL/min/kg)	rat serum stability (%) ^b	solution stability (%) ^c
	31	0.060	0.1	289	-	17
	33	0.618	0.2	27.0	85	95
	65	0.228	0.1	84.5	39	55
	68	0.851	0.3	19.8	78	91

Table 2-10. PK of 31, 33, 65, and 68 in Rats after Intravenous Administration^a

^{*a*}AUC, area under the plasma concentration-time curve from time zero to infinity; $T_{1/2}$, apparent terminal elimination half-life; CL_{tot} , total clearance. Dose = 1 mg/kg. N = 2 determination. ^{*b*}Remaining amount in rat serum after 30 min incubation. ^{*c*}Remaining amount in pH 7.0 phosphate buffer at 40 °C after 16 h. ^{*d*}n.c. = not calculated because of its low stability in rat serum.

Table 2-11. IC₅₀s and MICs of CFM in the Presence of 33 or 68^a

				$IC_{50} (\mu M)^b$		MIC (μ g/mL) of CFM in the presence of 4 μ g/mL of BLI ^c		
comp.	Mw ^f	clogP ^f	KPC-2 (class A)	CTX-M-15 (class A)	CMY-2 (class C)	K. pneumoniae ATCC-BAA-1705 KPC-2	<i>E. coli</i> SR09613 CMY-2 type	
33	280	-0.30	0.014	0.012	0.028	$0.25 (>32)^d$	0.125 (>32) ^d	
68	297	-0.63	0.977	0.249	1.11	$0.25 (32)^d$	$1 (>32)^d$	
alone	-	-	-	-	-	>32 ^e	>32e	

^{*a*}CFM: cefixime. ^{*b*}N = 1 determination. The values of IC₅₀ were determined without enzyme-inhibitor preincubation. ^{*c*}N = 1 determination. ^{*d*}MIC of BLI. ^{*e*}MIC of CFM alone. ^{*f*}Calculated as a free form.

第7節 本章のまとめ

本章では、2位に各種硫黄系官能基をもった DBO 誘導体の BLI としての有効性について、 活性、および、薬物動態の観点から評価した.その結果、2位への硫黄置換基の導入は β -ラ クタマーゼ産生株を用いた評価においてセフィキシムの抗菌活性を大幅に改善し、その効果 は既存の DBO 系 BLI であるアビバクタムを上回るものであった. β -ラクタマーゼ阻害活性 (IC₅₀)の観点からは、スルホン、スルホキシドの導入が特に有効であり、この変換によって 6 位をフルオロ酢酸に変更しても活性を維持することが明らかになった (Figure 2-1).さらに、 これらの DBO 誘導体は multi-PBP 阻害のメカニズムによって抗菌活性を示し、PBP2 選択的 なナクバクタムやジデバクタムといった既存の DBO 誘導体とは異なり、幅広い菌株に対して 抗菌活性を示した.

Figure 2-1. Summary of the effect of thio-functinal group at the C2 position on the biological activity.

また,これらの誘導体の多くにおいて血漿中安定性が低いことが原因で十分な血中暴露を 維持できないという課題があったが、2位と6位の置換基の組み合わせを網羅的に検討した 結果、2位スルホキシド、6位フルオロ酢酸の誘導体が活性と動態を両立できることを見出し た (Figure 2-2).

Good potential as BLIPreferable PK profile

参考文献(第2章)

- Bonnefoy, A.; Dupuis-Hamelin, C.; Steier, V.; Delachaume, C.; Seys, C.; Stachyra, T.; Fairley, M.; Guitton, M.; Lampilas, M. *In vitro* of AVE1330A, an innovative broad-spectrum non β-lactam β-lactamase inhibitor. *J. Antimicrob. Chemother.* **2004**, *54*, 410–417.
- Nikaido, H. Molecular Basis of Bacterial Outer Membrane Permeability Revisited. *Microbiol. Mol. Biol. Rev.* 2003, *36*, 340–363.
- Pagès, J-M.; Peslier, S.; Keating, T. A.; Lavigne, J-P.; Nichols, W. W. Role of the Outer Membrane and Porins in Susceptibility of β-Lactamase-Producing *Enterobacteriaceae* to Ceftazidime-Avibactam. *Antimicrob. Agents Chemother.* 2016, 60, 1349–1359.
- Yoshimura, F.; Nikaido, H. Diffusion of β-Lactam Antibiotics Through the Porin Channels of Escherichia coli K-12. Antimicrob. Agents Chemother. 1985, 27, 84–92.
- 5) Ledoussal, B.; Gourdel, M. E. Azabicyclic Compounds, Preparation Thereof and Use of Same as Drugs, Especially Beta-Lactamase Inhibitors. WO2009133442.
- 6) Miller, A. A.; Shapiro, A. B.; McLeod, S. M.; Carter, N. M.; Moussa, S. H.; Tommasi, R.; Mueller J. P. *In Vitro* Characterization of ETX1317, a Broad-Spectrum β-Lactamase Inhibitor That Restores and Enhances β-Lactam Activity against Multi-Drug-Resistant *Enterobacteriales*, Including Carbapenem-Resistant Strains. *ACS Infect. Dis.* 2020, *6*, 1389–1397.
- 7) Morinaka, A.; Tsutsumi, Y.; Yamada, M.; Suzuki, K.; Watanabe, T.; Abe, T.; Furuuchi, T.; Inamura, S.; Sakamaki, Y.; Mitsuhashi, N.; Ida, T.; Livermore, D. M. OP0595, a new diazabicyclooctane: mode of action as a serine β-lactamase inhibitor, antibiotic and β-lactam 'enhancer'. *J. Antimicrob. Chemother.* **2015**, *70*, 2779–2786.
- 8) Moya, B.; Barcelo, I. M.; Bhagwat, S.; Patel, M.; Bou, G.; Papp-Wallace, K. M.; Bonomo, R. A.; Oliver, A. WCK 5107 (Zidebactam) and WCK 5153 Are Novel Inhibitors of PBP2 Showing Potent "β-Lactam Enhancer" Activity against *Pseudomonas aeruginosa*, Including Multidrug-Resistant Metallo-β-Lactamase-Producing High-Risk Clones. *Antimicrob. Agents Chemother.* 2017, *61*, e02529-16.
- 9) Durand-Réville, T. F.; Comita-Prevoir, J.; Zhang, J.; Wu, X.; May-Dracka, T. L.; Romero, J. A. C.; Wu, F.; Chen, A.; Shapiro, A. B.; Carter, N. M.; McLeod, S. M.; Giacobbe, R. A.; Verheijen, J. C.; Lahiri, S. D.; Sacco, M. D.; Chen, Y.; O'Donnell, J. P.; Miller, A. A.; Mueller, J. P.; Tommasi, R. A. Discovery of an Orally Available Diazabicyclooctane Inhibitor (ETX0282) of Class A, C, and D Serine β-Lactamases. *J. Med. Chem.* **2020**, *63*, 12511–12525.
- Durand-Réville, T. F.; Guler S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A. B.; McLeod, S. M.; Carter, N. M.; Moussa, S. H.; Velez-Vega, C.; Olivier, N. B.; McLaughlin, R.; Gao, N.; Thresher, J.; Palmer, T.; Andrews, B.; Giacobbe, R. A.; Newman, J. V.; Ehmann, D. E.; Jonge, R. d.; O'Donnell, J.; Mueller, J. P.; Tommasi, R. A.; Miller A. A. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gramnegative bacteria including *Acinetobacter baumannii*. *Nat. Microbiol.* 2017, *2*, No. 17104.
- 11) Reck F.; Bermingham, A.; Blais, J.; Casarez, A.; Colvin, R.; Dean, C. R.; Furegati, M.; Gamboa, L.; Growcott, E.; Li, C.; Lopez, S.; Metz-ger, L.; Nocito, S.; Ossola, F.; Phizackerley K.; Rasper, D.; Shaul, J.; Shen, X.; Simmons, R. L.; Tang, D.; Tashiro K.; Yue, Q.; IID572: A New Potentially Best-In-Class β-Lactamase Inhibitor. ACS Infect. Dis. 2019, *5*, 1045–1051.

第3章 2位にスルホキシドを有する1,6-ジアザビシクロ[3.2.1]オクタン

誘導体の構造最適化

第1節 多様な側鎖を持った 2-スルフィニル-DBO の合成

前章で見出したリード化合物 33 の 2 位側鎖の最適化を行うために多様な側鎖をもった 2-スルフィニル-DBO 誘導体の合成を行った.これらの化合物の合成にあたっては,脱炭酸的ラ ジカル反応によるスルフィド側鎖の導入とジアステレオ選択性なスルホキシドへの酸化が重 要な工程であるため,これらを Table 3-1 にまとめた.なお,中間体であるスルフィド (2b, 34, 71a-711) はシリカゲルに対して不安定な可能性があるため,いずれもカルボン酸からスルフ ィドへの変換とスルホキシドへの酸化の2工程を経て単離した結果を示している.

第2章第1節において分子量が小さく脂溶性の低い側鎖が菌に対する活性に重要であるこ とが示唆されていたため、シンプルな極性基を中心に合成を行った.これらの側鎖はアルキ ル系の置換基であるため、第1章第2節で見出した非対称ジスルフィドやチオスルホネート を-SR 源として用いることで、試薬の当量数を 3–5 当量まで削減し、効率的に合成を行った. Barton エステルを用いた脱炭酸的なスルフィド構築反応は古くから知られているが、^[11] -SPh や-SMe の導入が大部分であり、多様な-SR 基の導入例としては筆者が知る限り本報告が初め てである.

脱炭酸的ラジカル反応においては、どの試薬を用いた場合にも反応は立体選択的に covex 面から進行し、いずれの反応においてもスルフィド (2b, 34, 71a-71l)の立体異性体は観測さ れなかった.本工程においては側鎖の立体障害が収率に影響することが確認され、立体障害 が最も小さい-SMe (23)と比較して、側鎖が伸長した 72c, 72g では収率が低下し、最もか さ高い 'Bu 基 (72k)では目的物が得られなかった(6位-OBn での比較).目的物が得られな かったり、収率が低い場合には、Barton エステル由来の-SPy 基と再結合した副生成物 85の生 成が増加することが観測された (Scheme 3-1).すなわち、この再結合反応が目的の反応と競 合しており、-SR 源となる試薬の反応性が低い場合には、副生成物 85 が優先的に生成するこ とで、目的物の収率が低下していると考えられる.立体障害とは別に、側鎖の電子求引性も 収率に影響を与えており、電子求引基を持った 35,72h は同様に硫黄原子のα位がメチレンと なっている 72c, 72e, 72g と比較して収率が高かった(6位-OBn での比較).なお、電子求引 基であるものの末端にアミドをもった 721 に関しては合成することができなかった.また、 基質の観点からは 6位にフルオロ酢酸エステルが導入されている 69,70 と比較して、Bn 保 護体 1 の方が収率が良い傾向にあった.

スルフィドからスルホキシドへの酸化反応については、側鎖によらず良好な選択性で酸化 反応が進行した.第2章においてX線結晶構造解析により23の相対配置を決定しているが、 ¹H NMR における2位プロトンの化学シフトの類似性から、今回合成した他の側鎖に関して も同様のジアステレオマーが主生成物で得られていると推定している.

Table 3-1. Substrate Scope and Limitation of Photo-Induced Decarboxylative Thiolation and Diastereoselectivity of Oxidation to Sulfoxides

Scheme 3-1. Mechanism for the Formation of Byproduct 85

ここまでは、鍵工程となるスルフィドの合成とジアステレオ選択的な酸化について述べて きたが、目的のβ-ラクタマーゼ阻害剤 (BLI)の合成の全工程について以下に示す.脱炭酸的 ラジカル反応による-SR 基の導入を鍵反応として、2つの合成ルートで目的の2-スルフィニ ル-DBO 誘導体を合成した.第一のルートは、2位に-SR 基を導入した後に6位をフルオロ酢 酸ユニットに変換するルートであり、単一の化合物の合成においては最短の工程数で目的物 を合成することができる.もう一方のルートは、あらかじめ6位にフルオロ酢酸ユニットを 導入した後に、2位を変換するルートであり、多様な2位側鎖を持った誘導体を効率的に合 成できる.

第一の合成ルートによる BLI の合成を以下に示す (Scheme 3-2). Table 3-1 の条件にてスル ホキシドを構築した後に (工程 a), 35 の 'Bu エステルを脱保護し, アンモニアと縮合するこ とでアミド 37 を合成した (工程 b, c). 続いて, 触媒量の DABCO を添加した条件で, Pd(OH)2 触媒下,水素添加反応にて脱 Bn 化を行い,得られたヒドロキシルアミンに対して,DBU (工 程 d) または K₂CO₃ (工程 e) を塩基として用いてフルオロ酢酸ユニットを導入した. ヒドロ キシエチル基を側鎖にもった 87 は、TBAF 条件にて TBS 基の除去を行い (工程 f)、生じた第 一級ヒドロキシ基をクロロスルホニルイソシアネート (CSI) と反応させた後, NaHCO3 水溶 液で処理することでカルバモイル基へと変換した (工程 g). 側鎖にジオール構造を持った 88 は、保護基であるアセトナイドを AlCl₄/アニソールの条件で脱保護した (工程 h). 化合物 89 の側鎖のトリメチルシリルエチルエステルを、ジフルオロトリメチルケイ酸トリス(ジメチル アミノ)スルホニウム (TASF) にて脱保護した後に、クロロギ酸イソブチルを用いた混合酸無 水物を経由してアミド96へと変換した (工程i). 側鎖にアミノエチル基をもった91は, TFA にて脱 Boc 化した後, Ac₂O を用いてアセチル化し, 97 を合成した (工程 j). ベンズヒドリル (Bzh) またはエチルエステルの加水分解によって,目的の化合物 33,98,101,105 を得た (工程 k). また, Bzh エステルは AlCl₃を用いた条件でも脱保護可能であり, 側鎖の保護基と同時に 脱保護することで 99,100,102 を得た (工程 1). さらに, Bzh エステルと Boc 基を TFA で同時 に脱保護することで,90から103を側鎖のアミンのTFA 塩として得た (工程 m).

CH₂Cl₂, -78 °C to rt, quant. over two steps; (k) NaOH, THF/H₂O, 0 °C, 43–78% for **33**, **98**, **101**, **104**, and **105**; (l) AlCl₃, (anisole), MeNO₂/CH₂Cl₂, -30 °C, then aq NaHCO₃ 49–79% for **99** (from **87**), **100**, and **102**; (m) TFA, CH₂Cl₂, 0 °C, quant. for **103** (from **90**). ^{*b*}Compound **103** is not Na salt but TFA salt of amine on the side chain. ^{*d*}The oxime was obtained as a single geometrical isomer, but the geometry (*E*/*Z*) is unknown.

2 位の変換体を効率的に合成するために,先に 6 位にフルオロ酢酸を導入し,後から 2 位 を変換するルートでの誘導体合成も行った (Scheme 3-3). 化合物 1 のカルボン酸を EDC/DMAP 条件にて,'BuOH と縮合することで'Bu エステル 106 へと変換し (工程 a),6 位 の脱 Bn 化とフルオロ酢酸ユニットの導入によって 107,108 を合成した (工程 b). これらの化 合物の 'Bu 基を TiCl₄によって脱保護することで,共通中間体であるカルボン酸 69,70 を合成 した (工程 c). 続いて, Table 3-1 の条件にて 2 位をスルホキシドへと変換した後に (工程 d), 72d の TBS 基および 72j の Boc 基を AlCl₃で除去して 109 および 111 を得た (工程 e). また, 72i のイミダゾールの Boc 基を TFA にて除去して, 110 を得た (工程 f). 最後に 6 位のフルオ ロ酢酸エステルを NaOH にて加水分解して,目的の 112–116 を得ることができた (工程 g).

Scheme 3-3. Synthesis of BLI 112-116

^aReagents and conditions: (a) 'BuOH, pyridine, EDC·HCl, DMAP, CH₂Cl₂, rt, 66%; (b) (i) Pd(OH)₂ on carbon or Pd/C, H₂ (1 atm), (DABCO), MeOH or DMF, rt; (ii) (*R*)-BrCHFCO₂R, R = Me (**22f**), Et (**22d**), K₂CO₃, DMF, -40 to -30 °C, 21–55% over 2 steps; (c) TiCl₄, MeNO₂/CH₂Cl₂, -30 °C, 78–89%; (d) Conditions are shown in **Table 4-1**; (e) AlCl₃, MeNO₂/CH₂Cl₂, -30 °C, 66–72%; (f) TFA, CH₂Cl₂, rt, quant.; (g) NaOH, THF/H₂O, 0 °C, 50–66%.

第2節 2位側鎖の構造活性相関

合成した 2-スルフィニル-DBO 誘導体の評価を行った (Table 3-2). 酵素阻害活性 (IC₅₀) と 共に、本章では minimum potentiating concentration (MPC) を評価の指標とする. 今回併用した β -ラクタム系抗菌薬は経口セフェムであるセフチブテン (CTB) であり、その腸内細菌科細 菌に対する EUCAST (The European Committee on Antimicrobial Susceptibility Testing) の定める 1日1回 (QD, quaque die), 400 mg, 経口投与時の breakpoint は 1 µg/mL である. ^[2] ここで は CTB の最小発育阻止濃度 (MIC) を 1 µg/mL まで回復させるために必要な最小の β -ラクタ マーゼ阻害剤濃度を MPC₁ と定義した. MPC₁ の値が小さいほど、 β -ラクタマーゼ阻害剤 (BLI) としてのポテンシャルが高いということになる.

第2章第1節でも述べた通り、グラム陰性菌の外膜を透過するためには低分子量であることや親水性が高いことが重要であるため、シンプルな極性基を中心に SAR の検討を行った

(99-101, 103, 104, 114). また, ラクタマーゼとの反応性を上げるために電子求引基が有効であ る可能性があるので,フッ素(112),アミド(98),ニトリル(113),オキシム(102)といった電子 求引基も導入した.これらに加えて,親水性の芳香環としてヘテロ環をもった化合物もデザ インした (105, 115, 116).

前章で見出した化合物 **33** は, IC₅₀, MPC₁ともにアビバクタム (AVI) と同等以上の結果で あった. 一方で, スルホキシドの立体化学が **33** と反対のジアステレオマーである **117** は, IC₅₀ の大きな減弱が確認された. 酵素阻害活性の減弱にも関わらず, **117** は ATCC BAA-1705 およ び SR34100 に対して **33** と同等の有効性を示し, SR09613 に対してのみ有効性の減弱が見ら れた. この結果は, セフチブテン (CTB) の各 β -ラクタマーゼに対する安定性の差から考察 できる. 各種ラクタマーゼを発現させた形質転換株に対する CTB の MIC を Table 3-3 にまと めたが, この結果から, CTB は class A の β -ラクタマーゼである KPC-2 や CTX-M-15 の発現 による MIC の減弱よりも, class C の CMY-2 の発現による MIC の減弱の方が大きいことが分 かる. つまり, CTB は KPC-2 や CTX-M-15 よりも CMY-2 に対して不安定であると可能性が 高い. Table 3-2 で評価した 3 つの菌株はこれらの β -ラクタマーゼの産生株であるが, CTB の β -ラクタマーゼに対する安定性の差から, CMY-2 産生株である SR09613 においてのみ IC₅₀ の減弱の影響が顕著に表れたと考えている.

スルホキシドのジアステレオマーである 117 を除いて、多くの誘導体では顕著な IC₅₀の減 弱は見られなかったが、いくつかの化合物において阻害活性の減弱が確認された.オキシム 構造を導入した 102 については、今回評価した 3 つのラクタマーゼ全てにおいて>5 倍の活性 減弱が認められ、塩基性のアミノ基をもった 103 においては、CTX-M-15 と CMY-2 に対して >10 倍の活性減弱が観測された.これらの化合物を除いては、顕著な IC₅₀の減弱はなかった ものの、ほとんどの化合物において 33 と比較して 4 倍以上の MPC₁の悪化が確認された.こ れは、分子量の増大に起因した外膜透過性の悪化が一因であると考えられ、今回評価した化 合物の中でも、分子量が小さく、親水性も高い 98 と 113 のみが化合物 33 と同等の MPC₁を 示した.同様の好ましい物性値をもった 103 についても、酵素阻害活性が減弱している CMY-2 産生の SR09613 を除いた 2 つの株 (ATCC BAA-1705, SR34100) に対して、化合物 33 と同 等の併用効果を示した.反対に、強い酵素阻害活性を持っていたとしても、分子量が 350 を 超える化合物は全て ATCC BAA-1705 および SR34100 に対する MPC₁が 4 倍以上悪化した (100, 102, 104, 105, 115, 116).

第2章第4節において、2位に硫黄置換基をもった DBO 誘導体は、multi-PBP 阻害に基づ くユニークな抗菌活性を示すことを報告したが、今回の一連の化合物は抗菌活性をほとんど 示さなかった.このことから、これらの化合物は自身のもつ抗菌活性ではなく、β-ラクタマ ーゼ阻害活性によって CTB の抗菌活性を回復させていると考えられる.

以上の検討より、今回検証した3種類の β -ラクタマーゼに対して良好な IC₅₀を示し、 β -ラ クタマーゼ産生株を用いた MPC₁の評価においても全ての株に対して良好な結果を与えた化 合物 33 が最も有望な化合物であると結論し、さらなる評価を行うこととした.

Table 3-2. SAR of Side Chain of Sulfoxide^a

				IC50 (µM) ^b		MPC ₁ (µg/m	nL) ^c / MIC (µg/r	nL) ^d
comp.	Mw^h	clogP ^h	KPC-2 (class A)	CTX-M-15 (class A)	CMY-2 (class C)	K. pneumoniae ATCC BAA-1705 ^e 8 µg/mL ^f	<i>E. coli</i> SR34100 ^e >32 μg/mL ^f	<i>E. coli</i> SR09613 ^e >32 μg/mL ^f
33	280	-0.30	0.014	0.012	0.028	0.063 / 32	0.125 / 32	0.125 / 32
117	280	-0.30	0.443	0.445	0.655	$0.125 \ [\le 0.031]^g / 32$	0.125 / 16	0.5 / 32
112	298	-0.13	0.090	0.006	0.113	0.5 / 32	0.25 / 32	0.25 / 32
98	323	-1.04	0.035	0.050	0.057	0.063 / 32	0.25 / 32	0.125 / 32
113	305	-0.52	0.039	0.007	0.096	≤0.031 />32	0.25 / >32	0.125 /32
99	310	-0.55	0.036	0.016	0.057	1 />32	0.5 / >32	0.125 / >32
114	324	-0.30	0.038	0.010	0.039	0.5 / >32	1 />32	0.063 / >32
100	353	-0.51	0.027	0.014	0.064	1 />32	1 />32	0.125 / >32
101	340	-0.45	0.056	0.010	0.052	0.25 / >32	1 />32	0.125 / >32
102	366	-0.86	0.132	0.070	0.143	2 / >32	2 / >32	0.25 / >32
103	309	-2.75	0.069	0.159	0.431	≤0.031 />32	0.125 / >32	0.5 / >32
104	351	-0.59	0.007	0.101	0.101	0.25 / >32	0.5 / >32	0.063 / >32
105	362	-1.88	0.016	0.024	0.036	1 />32	1 />32	0.125 / >32
115	346	-0.77	0.078	0.008	0.059	1/32	1 / 32	0.125 / 32
116	378	-0.51	0.088	0.010	0.041	0.25 / >32	1 />32	0.5 / >32
AVI	265	-1.63	0.072	0.013	0.059	0.125 / 32	0.125 / 16	0.5 / 16

^{*a*}Red: >5-fold increase on IC₅₀ value compared to **33**. Pink: ≥4-fold increase on MPC₁ value compared to **33**. AVI: avibactam. CTB: ceftibuten. ^{*b*}The values of IC₅₀ were determined without enzyme-inhibitor preincubation. N = 1 determination. ^{*c*}MPC₁ to reduce the MIC of CTB to 1 µg/mL. N = 1 determination. ^{*d*}MIC of BLI. N = 1 determination. ^{*c*}Strain ID. The followings are the expressed β -lactamases and the deletion of porin on each strain: ATCC BAA-1705, KPC-2 and Δ ompK35; SR34100, CTX-M-15; SR09613, CMY-2 type. ^{*f*}The MIC of CTB alone. ^{*g*}MPC₁ did not converge on an identical value. "X [Y]" means a compound reduced MIC of CTB to 1 µg/mL at its concentration of X and Y skipping values between them. ^{*h*}Calculated as a free form.

Table 3-3. MICs of CTB against Isogenic Strains of *E. coli* Expressing β-Lactamase

β-lactamase	parent	KPC-2	CTX-M-15	CMY-2	OXA-48
MIC $(\mu g/mL)^a$	0.031	0.25	0.25	8	0.031

 $^{a}N = 1$ determination.

第3節 化合物 33 の多数株評価

最も有望な化合物と考えられた **33** について,多数の臨床分離株に対する有効性の評価を行った (Table 3-4). その結果,化合物 **33** は class A, C, D 全てのクラスのセリンβ-ラクタマーゼ 産生株に対して優れた有効性を示すことが明らかとなった.特に,複数の株において優位に アビバクタム (AVI)を上回る併用効果を示した点は注目に値する.SR100758 は,AVI によ る阻害効率が低下する D179Y 変異の KPC-2 産生株であり,^[3] AVI の MPC₁ は変異の無い KPC-2 産生株である ATCC BAA-1705 (Table 3-2) と比較して 16 倍低下していたが,**33** の有効性の 低下は4 倍にとどまり,変異の β -ラクタマーゼに対しての有効性を維持していた.また,い くつかの class C に属する β -ラクタマーゼ産生株に対して,**33** は AVI を大きく上回る有効性 を示した (SR100108, SR09603).今回の評価で用いた臨床分離株は、高度に耐性化した株のセ ットであるにもかかわらず,全ての株に対して MPC₁ ≤ 4 µg/mL を達成することができてお り,化合物 **33** は BLI として高いポテンシャルを有することが明らかになった.

			MIC of	MPC ₁ (μg/mL) ^c / MIC (μg/mL) ^d		
species	strain ID	characteristics ^b	СТВ			
			(µg/mL)	33	AVI	
E. cloacae	SR200030	PER-2, ACT, ∆ompF	>32	4 / >32	16 / 32	
K. pneumoniae	SR100758	KPC-2 (D179Y)	16	0.25 / >32	2 / >32	
K. pneumoniae	SR201325	KPC-3	32	2 / >32	2/32	
E. cloacae	SR36276	AmpC	>32	2 / >32	4 / 32	
E. cloacae	SR100108	AmpC	>32	1 / >32	8 / 32	
K. pneumoniae	SR09635	DHA-1	>32	2 / 32	0.5 / >32	
K. pneumoniae	SR09603	CMY-8 type	>32	0.125 / 32	8 / >32	
K. pneumoniae	SR201218	OXA-48, CTX-M-15	>32	2 / >32	1 / >32	
K. pneumoniae	SR200263	OXA-48, CTX-M-1 group	>32	0.125 / 32	0.063 / >32	
K. pneumoniae	SR200487	VEB-8, CTX-M-15, SHV-110, CMY-16, OXA-48, OXA-10	>32	0.5 / >32	4 / >32	

Table 3-4. MPC	and MIC of 33	and AVI against	a Set of	Clinical Isolate	s ^a
				01111001 1001000	-

^{*a*}Blue: \geq 8-fold reduction compared to AVI, Red: \geq 8-fold increase compared to AVI. AVI: avibactam. CTB: ceftibuten. ^{*b*}The expressed β -lactamases and the deletion of porin on each strain. ^{*c*}MPC₁ to reduce the MIC of CTB to 1 µg/mL. N = 1 determination. ^{*d*}MIC of BLI. N = 1 determination.

ここまで触れてこなかったが、class D に分類される OXA-48 に対する酵素阻害活性を以下 に示す (Table 3-5). 化合物 33 は、OXA-48 に対する IC₅₀ では AVI を>10 倍上回わっており、 この点からも優れた BLI であることが示唆される. なお、今回 β -ラクタムとして用いたセフ チブテンは OXA-48 発現株に対して MIC の減弱が無いため (Table 3-3)、主薬としてセフチブ テンを用いる場合には、BLI の OXA-48 に対する阻害活性を考慮する必要性は低く、OXA-48 産生株 (Table 3-4: SR201218, SR200263) に対する効果も AVI と比較して大きな差は見られな かった.

Table 3-5. Inhibition Activity against OXA-48

compound	33	116	117	AVI
IC ₅₀ against OXA-48 (µM) ^a	0.443	0.981	32.6	5.70

AVI: avibactam. ^{*a*}The values of IC₅₀ were determined without enzyme-inhibitor preincubation. N = 1 determination.

第4節 化合物 33 の動態プロファイル

化合物 **33** を iv 投与した時の各種動物種における動態パラメータを以下に示す (Table 3-6). この化合物は中程度のクリアランス (CL_{tot}) と短い血中半減期 (T₁₂) を示したが,これらの値 はアビバクタムを含む他の DBO 誘導体と同程度であった. ^{[4], [5], [6]} また,全ての動物種にお いて血漿中フリー濃度 (PB % unbound) は高く,この傾向はヒトの血漿を用いた試験におい ても確認された (PB in human = 81% unbound) . β -ラクタム系抗菌薬や BLI においては,薬 物の血中フリー濃度が *in vivo* 薬効と相関することが報告されているため, ^[9] この結果は薬効 試験において良い結果を与える可能性を示唆するものである.一方で,脂溶性が低い (clogP = -0.30) ことから予想されるように,化合物 **33** を経口投与した場合の経口吸収性は低かった (*F* = 1.4% in rat).

Table 3-6. PK Parameter of 33 after Intravenous Administration^a

Animal	Dose	AUC	T _{1/2}	CL _{tot}	PB
Ammai	(mg/kg)	(µg·h/mL)	(h)	(mL/min/kg)	(% unbound)
Mouse	10	4.92 ± 0.94	0.4 ± 0.2	34.7 ± 6.8	74
Rat	1	0.618^{b}	0.2^b	27.0^{b}	100
Dog	5	19.4 ± 1.1	0.9 ± 0.1	4.30 ± 0.24	86
Monkey	5	13.8 ± 2.2	0.5 ± 0.1	6.15 ± 1.06	84

 ${}^{a}N = 3$ determination. AUC, area under the plasma concentration-time curve from time zero to infinity. T_{1/2}, apparent terminal elimination half-life. CL_{tot}, total clearance. PB, serum protein binding. ${}^{b}N = 2$ determination.

第5節 経口プロドラッグの探索

化合物 33 自身の経口吸収性は低かったことから, プロドラッグ化による経口吸収性の改善 を試みた (Table 3-7). 上市されているエステルプロドラッグの構造を参考に, ^[7] いくつかの アルキルエステル 117–119 を合成した.また, β-ラクタム系抗菌薬のプロドラッグとして実 績のあるピボキシル^[8] 120 の合成も試みたが,カルボン酸側が反応性の高いフルオロ酢酸構 造であることにより, 120 は非常に不安定であり単離することができなかった.

プロドラッグ 117-119 は、いずれも化合物 33 の経口吸収性を大きく改善した.また、エス テル構造は経口吸収後速やかに活性本体 33 へと加水分解され、血中において未反応のプロド ラッグは検出されなかった.エステルの構造間において経口吸収性の差は見られたが、T_{max}を はじめとしたその他の動態パラメータには違いはなかった.一方で、pH 7.4 の buffer 中での 安定性は分枝型のエステル (118,119)の方が直線型のもの (117)よりも高かった.このよう に溶液安定性が良好で、非齧歯類 (サル、イヌ)における経口吸収性が高かったシクロへキ シルエステル 119 を選抜し、次の経口投与での *in vivo* 薬効試験を行うこととした.

-		F O R		R = clogP =	117 0.30	118 0.61	119 1.81	\sim	120 0.90	
	Rat (fed, 5 mg/kg	N = 1	2)		D	og (fasted, 1	0 mg/kg, l	N = 2)	
comp.	C _{max} (µg/mL)	AUC _{po} (µg·h/mL)	T _{max} (h)	F (%)	(C _{max} (µg/mL)	AUC _{po} (µg·h/mL)	T _{max} (h)	x	F (%)
117	2.15	2.30	0.5	74.4		10.6	26.0	1.0		68.3
118	1.70	2.09	0.5	67.6		7.39	18.4	0.8		48.1
119	0.62	1.17	0.5	37.8	15	5.8 ± 1.4^b	41.2 ± 3.8^b	1.0 ± 0	0.0^{b} 106	5.1 ± 7.4^b
	Ν	Ionkey (faste	ed, 10	mg/kg, N	⁷ = 3)		colution	atability		
comp.	C _{max} (µg/mL)	AUCr (µg·h/m	∞ nL)	T _{max} (h)	(F %)	at pH 7	.4 (%) ^c		
117	4.51 ± 0.3	3 8.32 ± 1	.96	1.0 ± 0.0	29.9	0 ± 2.8		11		
118	4.38 ± 1.1	$0 7.06 \pm 1$.26	1.0 ± 0.0) 25.5	5 ± 0.7	-	56		
119	7.94 ± 2.7	4 15.2 ± 2	2.7	1.0 ± 0.0	54.8	3 ± 3.7	4	56		

Table 3-7. PK Parameter of 33 after Oral Administration of Prodrugs^a

^{*a*}C_{max}, peak concentration. AUC, area under the plasma concentration-time curve from time zero to infinity. T_{max}, time at peak concentration. *F*, bioavailability calculated from AUC_{po} and AUC_{iv} of **33**. ^{*b*}N = 3 determination. ^{*c*}Remaining amount in pH 7.4 phosphate buffer at 40 °C after 16 h.

第6節 経口投与による in vivo 薬効

マウス尿路感染モデルにおいて, セフチブテン (CTB) とプロドラッグ 119 を併用した in vivo 薬効評価を行った (Figure 3-1). このモデルは、マウスの尿路に KPC 産生株である K. pneumoniae SR08667を感染させたものであり、この株に対する CTB 単剤での抗菌活性を調べ たところ, MIC = 32 µg/mL であった. また, この株に対してプロドラッグ 119 の活性本体で ある 33 が, CTB の MIC を 1 μg/mL まで回復させるのに必要な最小濃度である MPC1 は 1 μg/mL であった. この試験において, CTB 単剤を 30 mg/kg で投与した場合には, 投与開始前 と比較して腎内の菌数は減少せずに 2 log (100 倍) 以上も増加する.これに対して, CTB の投 与量を10 mg/kgに固定した上で,119を3,10,30 mg/kgと投与量を増やしていったところ, 10 mg/kg の投与量で併用した場合において, 投与開始時点の菌数と比較して-0.8 log (ca. 1/6) の腎臓内の菌数の減少が確認された.一方で,119を30 mg/kgまで増量してもこれ以上の菌 数の減少にはつながらなかった. また, CTB と 119 を共に 30 mg/kg 投与した場合において は、-1 log(1/10)を超える菌数の減少が認められた.以上の結果より、119と併用することで CTB の抗菌活性を回復させていることが in vivo 試験で確認できた. なお, 薬効試験に先立っ て、マウスにおける 33 の血中濃度の用量依存性を確認したところ、プロドラッグ 119 は 100 mg/kg までの投与量において、用量依存的に血中暴露が増加することを確認している (Table 3-8).

Figure 3-1. *In vivo* efficacy in a murine urinary tract infectious model after oral administration of CTB and prodrug **119**. *^a*Change in Log CFU/kidney compared to the untreated control at the start of treatment. N = 5 determination. CTB: ceftibuten. CFU: colony forming unit.

Table 3-8. PK Parameter of 33 after Oral Administration of 119 in Mice	e
--	---

Dose (mg/kg)	$C_{max} \left(\mu g/mL\right)$	AUC ($\mu g \cdot h/mL$)	F(%)
10	5.6	3.9	80
30	21.4	18.1	122
100	52.0	50.2	102

 ${}^{a}N$ = 3 determination. C_{max}, peak concentration. AUC, area under the plasma concentration-time curve from time zero to infinity. *F*, bioavailability calculated from AUC_{po} and AUC_{iv} of **33**.

第7節 安全性

薬効を示した化合物 **119** は、ラットを用いた 2 週間連続投与の毒性試験において安全性を 確認した. その結果, 無毒性量 (NOAEL, no observed adverse effect level) は 600 mg/kg/day で あり, 致死量 (lethal dose) は>2000 mg/kg/day であった.

第8節 本章のまとめ

本章では、強力な活性と良好な薬物動態プロファイルが両立した 2-スルフィニル-DBO 誘 導体の側鎖の最適化を実施し、側鎖に Me 基をもった化合物 33 が BLI として最も優れた有効 性を示すことを見出した.この化合物は多数の臨床分離株を用いた *in vitro* の有効性評価にお いて、既存の DBO 型 BLI であるアビバクタムと同等以上の有効性を示した.化合物 33 自身 には十分な経口吸収性はなかったが、プロドラッグ化を検討したところ、経口吸収性が大き く改善できることを見出した.この中でも非げっ歯類における経口吸収性が高かったシクロ ヘキシルエステル 119 を選抜し、*in vivo* 薬効試験を実施した結果、KPC 産生株を用いたマウ ス尿路感染モデルにおいて、経口投与にてセフチブテンの抗菌活性を回復させることが確認 された.この結果から、本研究の目的であるカルバペネム耐性腸内細菌科細菌 (CRE) に有効 新規経口β-ラクタマーゼ阻害剤を見出すことができたと言える.

参考文献(第3章)

- Barton, D. H. R.; Bridon, D.; Zard, S. Z. The Invention of New Radical Chain Reactions. Part XIII. High Yielding Decarboxylative Chalcogenation of Aliphatic and Alicyclic Acids. *Heterocycles* 1987, 25, 449–462.
- EUCAST Breakpoint tables for interpretation of MICs and zone diameters v. 11.0, valid from 2021-01-01. https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tabl es/v_11.0_Breakpoint_Tables.pdf (accessed May 3, 2021)
- Compain, F.; Arthur, M. Impaired Inhibition by Avibactam and Resistance to the Ceftazidime-Avibactam Combination Due to the D¹⁷⁹Y Substitution in the KPC-2 β-Lactamase. *Antimicrob. Agents Chemother.* 2017, *61*, e00451-17.
- Durand-Réville, T. F.; Guler S.; Comita-Prevoir, J.; Chen, B.; Bifulco, N.; Huynh, H.; Lahiri, S.; Shapiro, A. B.; McLeod, S. M.; Carter, N. M.; Moussa, S. H.; Velez-Vega, C.; Olivier, N. B.; McLaughlin, R.; Gao, N.; Thresher, J.; Palmer, T.; Andrews, B.; Giacobbe, R. A.; Newman, J. V.; Ehmann, D. E.; Jonge, R. d.; O'Donnell, J.; Mueller, J. P.; Tommasi, R. A.; Miller A. A. ETX2514 is a broad-spectrum β-lactamase inhibitor for the treatment of drug-resistant Gramnegative bacteria including *Acinetobacter baumannii*. *Nat. Microbiol.* 2017, *2*, No. 17104.
- 5) Reck F.; Bermingham, A.; Blais, J.; Casarez, A.; Colvin, R.; Dean, C. R.; Furegati, M.; Gamboa, L.; Growcott, E.; Li, C.; Lopez, S.; Metzger, L.; Nocito, S.; Ossola, F.; Phizackerley, K.; Rasper, D.; Shaul, J.; Shen, X.; Simmons, R. L.; Tang, D.; Tashiro K.; Yue, Q.; IID572: A New Potentially Best-In-Class β-Lactamase Inhibitor. ACS Infect. Dis. 2019, 5, 1045–1051.
- 6) Durand-Réville, T. F.; Comita-Prevoir, J.; Zhang, J.; Wu, X.; May-Dracka, T. L.; Romero, J. A. C.; Wu, F.; Chen, A.; Shapiro, A. B.; Carter, N. M.; McLeod, S. M.; Giacobbe, R. A.; Verheijen, J. C.; Lahiri, S. D.; Sacco, M. D.; Chen, Y.; O'Donnell, J. P.; Miller, A. A.; Mueller, J. P.; Tommasi, R. A. Discovery of an Orally Available Diazabicyclooctane Inhibitor (ETX0282) of Class A, C, and D Serine β-Lactamases. *J. Med. Chem.* **2020**, *63*, 12511–12525.
- Huttunen, K. M.; Raunio, H.; Rautio, J. Prodrugs-from Serendipity to Rational Design. *Pharmacol. Rev.* 2011, 63, 750–771.
- Nishimura, T.; Yoshimura, Y.; Miyake, A.; Yamaoka, M.; Takanohashi, K.; Hamaguchi, N.; Hirai, S.; Yashiki, T.; Numata, M. Orally Active 1-(Cyclohexyloxyxarbonyloxy)alkyl Ester Prodrugs of Cefotiam. *J. Antibiot.* **1987**, *40*, 81–90.
- 9) O'Donnell, J.; Tanudra, A.; Chen, A.; Hines, D.; Tommasi, R.; Mueller, J. Pharmacokinetiv/Pharmacodynamic Determination and Preclinical Pharmacokinetics of the β-Lactamase Inhibitor ETX1317 and Its Orally Available Prodrug ETX0282. ACS Infect. Dis. 2020, 6, 1378–138

結語

本論文では、1,6-ジアザビシクロ[3.2.1]オクタン (DBO) 骨格を有する新規経口β-ラクタマ ーゼ阻害剤 (BLI) の探索研究について述べた. DBO 骨格において2位の置換基の電子求引性 基がβ-ラクタマーゼ阻害活性を向上させるという仮説の元、2位に硫黄置換基をもった新規 DBO 系 BLI に着目し、脱炭酸的ラジカル反応を鍵反応として、この新規 DBO 誘導体の合成 法を確立した. このような硫黄置換基の導入は、β-ラクタマーゼ阻害活性を向上させるとと もに、6位の構造的許容性を拡張し、2位と6位の構造の組み合わせの中から、活性だけでな く、医薬品として必要な動態、物性特性を兼ね備えた経口 BLI を同定した.本研究成果は、 DBO 系 BLI や DBO 骨格を持った新規抗菌薬のデザインに有用な知見を与えるものである.

本研究により得られた成果を以下に示す.

1. 酸や塩基,熱に対して不安定な DBO 化合物の誘導体合成において,中性・室温条件で進行する光照射による脱炭酸的ラジカル反応が活用できると考え,この反応を利用して,DBO 骨格 2 位に対してジアステレオ選択的に-SR 基を導入することに成功した.また,これまでの報告例では,本反応においては芳香族ジスルフィドと比較して脂肪族ジスルフィドの反応性が低く,過剰量の試薬が必要であることが知られていたが,脂肪族-SR 化試薬を対称なジスルフィドではなく,芳香族チオールと組み合わせた非対称ジスルフィドやチオスルホネートとすることで,反応性を改善し,試薬の当量数を減少させることに成功した.こうして合成したスルフィドから,酸化等の官能基変換を行うことで,目的とした 2 位に硫黄置換基を有する DBO 系 BLI の合成を達成した.

2.2位に硫黄置換基を有する DBO 系 BLI が,既存薬であるアビバクタムと同等以上のβ-ラ クタマーゼ阻害活性を有し,β-ラクタム系抗菌薬であるセフェキシム (CFM) に耐性を持っ たβ-ラクタマーゼ産生菌に対して,CFM と併用することで,その抗菌活性を十分に回復させ ることを明らかにした.さらに,阻害活性が向上したことで6位の構造許容性が拡大し,硫 酸構造だけでなく,フルオロ酢酸構造においても強力な活性を示すことを見出した.これら のDBO 誘導体は,ラットにおいて血漿中安定性が低く,血中濃度を十分に維持できないもの が多かったが,2位と6位の構造の組み合わせを探索したところ,2位にスルホキシド,6位 にフルオロ酢酸構造を持った誘導体が,阻害活性とラット血漿中安定性を両立できることを 見出した.

3. 上記で見出した DBO 化合物の 2 位スルホキシド側鎖の最適化を検証した結果,メチル基 を側鎖とした化合物が最も良い活性を示すことを確認した.この化合物は脂溶性が低く,経 ロ吸収性を示さなかったが,6 位のフルオロ酢酸をエステルプロドラッグへと変換すること で経口吸収性が改善できることを見出した.さらに,β-ラクタマーゼ産生の耐性菌を用いた *in vivo* マウス尿路感染モデルにおいて,経口セフェムであるセフチブテン (CTB)の単剤投与 では腎臓内の菌数を減少させることはできなかったが,前述のプロドラッグを併用経口投与 することで菌数を減少させることを確認した.

業績リスト

論文発表

- Synthesis of 2-Thio-Substituted 1,6-Diazabicyclo[3.2.1]octane Derivatives, Potent β-Lactamase Inhibitors
 <u>Motohiro Fujiu</u>, Katsuki Yokoo, Toshiaki Aoki, Satoru Shibuya, Jun Sato, Kazuo Komano, Hiroki Kusano, Soichiro Sato, Masayoshi Ogawa, and Kenji Yamawaki
 J. Org. Chem. 2020, 85, 9650–9660.
- 2) Introduction of a Thio Functional Group to Diazabicyclooctane: An Effective Modification to Potentiate the Activity of β-Lactams against Gram-Negative Bacteria Producing Class A, C, and D Serine β-Lactamases <u>Motohiro Fujiu</u>, Katsuki Yokoo, Jun Sato, Satoru Shibuya, Kazuo Komano, Hiroki Kusano, Soichiro Sato, Toshiaki Aoki, Naoki Kohira, Satoshi Miyagawa, Tomoyuki Kawachi, and Kenji Yamawaki

ACS Infect. Dis. 2020, 6, 3034–3047.

3) Discovery of 2-Sulfinyl-Diazabicyclooctane Derivatives, Potential Oral β-Lactamase Inhibitors for Infections Caused by Serine β-Lactamase-Producing Enterobacterales <u>Motohiro Fujiu</u>, Katsuki Yokoo, Jun Sato, Satoru Shibuya, Kazuo Komano, Hiroki Kusano, Soichiro Sato, Toshiaki Aoki, Naoki Kohira, Sachi Kanazawa, Ryosuke Watari, Tomoyuki Kawachi, Yuya Hirakawa, Daiki Nagamatsu, Emi Kashiwagi, Hideki Maki, and Kenji Yamawaki *J. Med. Chem.* 2021, 64, 9496–9512.

謝辞

本論文の作成に際し,有益なご助言とご指導を賜りました神戸薬科大学大学院 上田昌史 教授に深く感謝致します.

本論文の審査にあたり,有益なご助言とご指導を賜りました神戸薬科大学大学院 小西守 周教授,奥田健介教授,波多野学教授に深く感謝致します.

本研究の機会を与えて下さり,過分の御便宜を頂きました塩野義製薬(株)創薬化学研究 所所長山脇健二博士に深く感謝致します.

議論を通じて本研究を着想するきっかけを与えて頂きました塩野義製薬(株)主任研究員 横尾克己氏に深く感謝致します.

本研究を行うにあたり,薬理データの取得および結果の解釈に御助言を頂きました塩野義 製薬(株)主席研究員 巻秀樹博士,塩野義製薬(株)小平尚輝博士,金沢幸博士,宮川聡史 氏に深く感謝致します.

また,X線結晶構造解析のデータを取得して頂きました塩野義製薬(株)小川政義氏,動態,物性,安全性のデータの取得および結果の解釈に御助言を頂きました塩野義製薬(株) 渡亮輔氏,河内智行氏,永松大樹博士,平川祐也博士,柏木絵美氏に深く感謝致します.

共に忌憚なき意見を交わし合い合成研究に励んだ塩野義製薬(株)佐藤淳氏,青木俊明氏, 草野博喜氏,駒野和雄博士,渋谷聡氏,佐藤壮一郎博士に深く感謝致します.

最後に、本研究を行うにあたり、分析データを取得して頂きました塩野義製薬(株)分析 化学研究所研究員 菅由紀子博士、シオノギテクノアドバンスリサーチ(株)森田宏俊博士、 高木由美子氏に深く感謝致します.

2022年12月

実験の部

General. Unless otherwise noted, reactions were performed under a nitrogen atmosphere. Solvents and commercial reagents were used without purification. Carboxylic acid 1 was purchased from PharmaBlock R&D Co. Avibactam,¹ nacubactam,² and zidebactam³ were synthesized via analogous method as reported. Analytical thin-layer chromatography (TLC) was run on silica gel F254 precoated plates. Visualization of the developed chromatogram was performed by fluorescence quenching or Vaughn's reagent. Column chromatography was carried out using silica gel. Reverse phase column chromatography was performed using HP20SS and octadecylsilyl (ODS) Silica Gel (Yamazen Ultra Pack). ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on a Bruker AV400 spectrometer. Chemical shifts (δ) are reported in parts per million (ppm) from tetramethylsilane (TMS) (in CD₃Cl, DMSO-*d*₆, methanol-d₄), sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS-d₆) (in D₂O) or the solvent residual peak (in D₂O δ 4.79) as an internal reference. High-resolution mass spectral data were acquired on Orbitrap O Exactive Plus (ESI). Low-resolution mass spectral data were collected on a Waters ZO mass detector (ESI), a Shimadzu LCMS-8030 (ESI), or a Shimadzu LCMS-2020 (ESI). Purity was determined on a Shimadzu Prominence HPLC system using a COSMOSIL 5C18-AR-II column. Mobile phase A was 0.1% trifluoroacetic acid in water, and mobile phase B was 0.1% trifluoroacetic acid in acetonitrile. One of the following methods (A-D) was used: method-A, a gradient from 2% to 100% B in 10 min and held at 100% B for 5 min; method-B, a gradient from 10% to 100% B in 10 min and held at 100% B for 5 min; method-C, an isocratic 5% B; method-D, an isocratic 7% B; method-E, an isocratic 10% B; method-F, an isocratic 4% B. Elemental analysis was performed using Micro Corder JM11 (J-SCIENCE LAB CO., Ltd.). Light promoted reactions were carried out using a Kessil A 160WE Tuna Blue 40 W lamp with the white light mode. LED lamps were placed 2-10 cm away from the reaction vessel without any filters. Purities for all tested compounds were determined by HPLC analysis and described along with other characteristic data.

All studies with animals were approved by the Institutional Animal Care and Use Committee of Shionogi & Co., Ltd.

第1章の合成

第2節

(2R,5R)-6-(Benzyloxy)-2-(phenylthio)-1,6-diazabicyclo[3.2.1]octan-7-one (2a). To a solution of carboxylic acid 1 (300 mg, 1.09 mmol) and 2-mercaptopyridine 1-oxide 4 (145 mg, 1.14 mmol) in CH₂Cl₂ (3.0 mL) was added EDC·HCl (219 mg, 1.14 mmol). The solution was stirred for 1.5 hours at room temperature in the dark. Diphenyldisulfide **5a** (1.19 g, 5.43 mmol) was added and stirred under white light irradiation using two LED lamps for 30 min at 0 °C. The reaction mixture was poured into water and the layers were separated. The organic layer was dried over MgSO₄ and concentrated under

reduced pressure. The crude product was purified by flash column chromatography to obtain **2a** (171 mg, 46%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.48–7.20 (10H, m), 5.06–5.04 (2H, m), 4.90 (1H, d, *J* = 11.5 Hz), 3.82 (1H, d, *J* = 11.5 Hz), 3.37–3.34 (1H, br m), 2.90 (1H, d, *J* = 11.5 Hz), 2.47–2.36 (1H, m), 2.05–2.01 (1H, m), 1.78–1.69 (2H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 168.6, 135.9, 133.8, 130.1, 129.2, 129.0, 128.7, 128.5, 127.0, 78.2, 66.3, 59.0, 44.0, 24.7, 20.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₂S 341.1318; Found 341.1317.

*1-Methyl-2-phenyldisulfane (5b).*⁴ To a solution of NaOH (486 g, 12.1 mol) in H₂O (1220 mL) was added benzenthiol (1.25 L, 12.1 mol) at 0 °C. After stirring for 10 minutes at room temperature, methyl methanethiosulfonate **8** (1.25 L, 12.1 mol) was added at 0 °C and the mixture was stirred for 1 hour at room temperature. The reaction mixture was extracted with EtOAc (600 mL) and the organic layer was died over Na₂S₂O₃. After the solvent was removed, the crude product was distilled under reduced pressure (10 mmHg, 105–115 °C) to afford **5b** (1710 g, 90%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.53–7.54 (2H, m), 7.34 (2H, t, *J* = 7.6 Hz), 7.24 (1H, t, *J* = 7.4 Hz), 2.45 (3H, s).

(2*R*,5*R*)-6-(*Benzyloxy*)-2-(*methylthio*)-1,6-diazabicyclo[3.2.1]octan-7-one (2b). To a solution of carboxylic acid **1** (300 mg, 1.09 mmol) and 2-mercaptopyridine 1-oxide **4** (145 mg, 1.14 mmol) in CH₂Cl₂ (3.0 mL) was added EDC·HCl (219 mg, 1.14 mmol). The solution was stirred for 1.5 hours at room temperature in the dark. PhSSMe **5b** (848 mg, 5.43 mmol) was added and stirred under white light irradiation using two LED lamps for 30 min at 0 °C. The reaction mixture was poured into water and the layers were separated. The organic layer was dried over MgSO₄ and concentrated under reduced pressure. The crude product was purified by flash column chromatography to obtain **2b** (99.3 mg, 33%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.44–7.36 (5H, m), 5.06 (1H, d, *J* = 11.5 Hz), 4.91 (1H, d, *J* = 11.5 Hz), 4.58 (1H, d, *J* = 7.3 Hz), 3.74 (1H, d, *J* = 11.5 Hz), 3.33–3.31 (1H, br m), 2.82 (1H, d, *J* = 11.5 Hz), 2.34–2.24 (1H, m), 2.11 (3H, s), 1.97–1.94 (1H, m), 1.68–1.53 (2H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 169.4, 136.0, 129.2, 128.7, 128.5, 78.2, 65.6, 59.2, 43.4, 24.4, 20.7, 13.9. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₄H₁₉N₂O₂S 279.1162; Found 279.1160.

(2*R*,5*R*)-6-(*Benzyloxy*)-2-(*phenylsulfonyl*)-1,6-diazabicyclo[3.2.1]octan-7-one (9a). To a solution of **2a** (353 mg, 1.04 mmol) in CH₂Cl₂ (10 mL) was added 72 wt% *m*-CPBA (547 mg, 2.28 mmol) at 0 °C. After stirred for 1 hour at room temperature, the mixture was poured into aqueous sodium thiosulfate solution and the layers were separated. The aqueous layer was extracted with ethyl acetate (20 mL × 2) and the combined organic layers were dried over Na₂SO₄. After the solvent was removed under vacuum, the crude product was purified by flash column chromatography (20–50% EtOAc/hexane) to obtain **9a** (353 mg, 91%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.91 (2H, *J* = 7.5 Hz), 7.67 (1H, *J* = 7.4 Hz), 7.56 (2H, *J* = 7.8 Hz), 7.37–7.35 (5H, m), 4.94 (1H, *J* = 11.5 Hz), 4.81 (1H, *J* = 11.5 Hz), 4.41 (1H, *J* = 7.5 Hz), 3.73 (1H, *J* = 11.8 Hz), 3.43–3.42 (1H, m), 3.02 (1H, *J* = 12.0 Hz), 2.48–2.44 (1H, m), 2.22–2.09 (2H, m), 1.91–1.86 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 167.2, 136.2, 135.5, 134.1, 129.2, 129.2, 129.0, 128.8, 128.6, 78.1, 74.2, 57.8, 43.2, 18.7, 15.6. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₉H₂₁N₂O₄S 373.1217; Found 373.1214.

(2*R*,5*R*)-6-(*Benzyloxy*)-2-(*methylsulfonyl*)-1,6-diazabicyclo[3.2.1]octan-7-one (9b). To a solution of **2b** (1.00 g, 3.59 mmol) in CH₂Cl₂ (20 mL) was added 72 wt% *m*-CPBA (2.16 g, 9.00 mmol) at 0 °C. After stirred for 1 hour at 0 °C, the mixture was poured into a mixture of aqueous sodium thiosulfate solution and sodium bicarbonate solution and the layers were separated. The aqueous layer was extracted with dichloromethane (20 mL × 1) and the combined organic layers were dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (33–67% EtOAc/hexane) to obtain **9b** (1.01 g, 90%) as a white amorphous. ¹H NMR (400 MHz, CDCl₃) δ : 7.39 (5H, t, *J* = 5.5 Hz), 5.01 (1H, d, *J* = 11.5 Hz), 4.88 (1H, d, *J* = 11.3 Hz), 4.33 (1H, t, *J* = 7.8 Hz), 3.60 (1H, d, *J* = 12.0 Hz), 3.45–3.44 (1H, m), 3.06–3.02 (4H, m), 2.36–2.26 (1H, m), 2.15–2.03 (2H, m), 1.84–1.79 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 167.3, 135.4, 129.2, 128.9, 128.6, 78.3, 72.7, 57.7, 43.0, 37.3, 18.2, 13.8. HRMS (ESI) *m*/z: [M + H]⁺ Calcd for C₁₄H₁₉N₂O₄S 311.1060; Found 311.1058.

Sodium (2R,5R)-7-oxo-2-(phenylsulfonyl)-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (11a). To a solution of **9a** (200 mg, 0.54 mmol) in THF/MeOH (v/v = 2/1, 6 mL) was added 5% Pd/C (57.1 mg, 0.29 wt equiv). After stirred at room temperature under H_2 (1 atm) atmosphere for 1 hour, the mixture was filtered. The solvent was removed in vacuo. The crude product was dissolved to pyridine (4 mL) and SO₃-pyridine (514 mg, 3.23 mmol) was added. After stirred for 3.5 hours, 8.4% NaHCO₃ aq (20 mL) was added at 0 °C and the aqueous layer was washed with CH_2Cl_2 (20 mL \times 3). To the aqueous layer was added CH₂Cl₂ (20 mL) and tetrabutylammonium hydrogen sulfate (183 mg, 0.54 mmol) at 0 °C. After stirred at room temperature for 15 minutes, the aqueous layer was extracted with CH₂Cl₂ (20 mL \times 3) and the solvent was removed under reduced pressure. The crude product was applied onto a Dowex[®] sodium form column (Dowex[®] 50WX8 hydrogen form treated with 1N NaOH aq and washed until neutral pH with H₂O) and subjected to ODS column chromatography (H₂O only). The fractions containing the desired compound were combined, frozen and lyophilized to afford 11a (162 mg, 78%) as a white amorphous. ¹H NMR (400 MHz, D₂O) δ : 7.99 (2H, d, J = 7.8 Hz), 7.85 (1H, t, J = 7.5 Hz), 7.72 (2H, t, J = 7.8 Hz), 4.84–4.80 (1H, m), 4.26–4.26 (1H, m), 3.56 (1H, d, J = 12.5 Hz), 3.32 (1H, dd, J = 12.4, 2.6 Hz), 2.39–2.33 (1H, m), 2.18–2.03 (3H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ: 167.9, 135.4, 133.8, 129.7, 129.1, 75.0, 59.3, 43.4, 17.7, 16.3. HPLC: 93.0%. Anal. Calcd for C₁₂H₁₃N₂O₇S₂Na(H₂O)_{1.3}: C, 35.35; H, 3.86; N, 6.87; S, 15.72; Na, 5.64. Found: C, 35.48; H, 4.13; N, 6.84; S, 15.88; Na, 5.48.

Sodium (2R,5R)-2-(methylsulfonyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (11b). To a solution of **9b** (200 mg, 0.54 mmol) in THF/MeOH (v/v = 1/1, 4 mL) was added 5% Pd/C (68.6 mg, 0.34 wt equiv). After stirred at room temperature under H₂ (1 atm) atmosphere for 1 hour, the mixture was filtered. The solvent was removed *in vacuo* and the crude product was used without any purification. The crude product was dissolved to pyridine (4 mL) and SO₃-pyridine (514 mg, 3.23 mmol) was added. After stirred for 3.5 hours, 8.4% NaHCO₃ aq (20 mL) was added at 0 °C and the aqueous layer was washed with CH₂Cl₂ (20 mL × 3). To the aqueous layer was added CH₂Cl₂ (20 mL) and tetrabutylammonium hydrogen sulfate (183 mg, 0.54 mmol) at 0 °C. After stirred at room temperature for 15 minutes, the aqueous layer was extracted with CH₂Cl₂ (20 mL × 3) and the solvent was removed under reduced pressure. The crude product was applied onto a Dowex[®] sodium form column (Dowex[®] 50WX8 hydrogen form treated with 1N NaOH aq and washed until neutral pH with H₂O) and subjected to ODS column chromatography (H₂O only). The fractions containing the desired compound were combined, frozen and lyophilized to afford **11b** (172 mg, 83%) as a white amorphous. ¹H NMR (400 MHz, D₂O) δ : 4.77 (1H, t, *J* = 8.3 Hz), 4.31–4.31 (1H, br m), 3.69 (1H, d, *J* = 12.3 Hz), 3.42 (1H, dd, *J* = 12.4, 2.6 Hz), 3.19 (3H,

s), 2.38–2.28 (1H, m), 2.21–2.07 (3H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ: 168.2, 73.1, 59.4, 43.3, 36.5, 17.4, 14.5. HPLC: 99.3% (method-C). Anal. Calcd for C₇H₁₁N₂O₇S₂Na(H₂O)_{1.9}: C, 23.58; H, 4.18; N, 7.86; S, 17.99; Na, 6.45. Found: C, 23.64; H, 4.27; N, 7.89; S, 17.88; Na, 6.64.

Methyl 2-(phenyldisulfaneyl)acetate (16). To a solution of methyl 2-mercaptoacetate (100 mg, 0.94 mmol) in MeCN (2 mL) was added 1 N aq NaOH (0.94 mL, 0.94 mmol) at 0 °C. After being stirred for 10 min at 0 °C, *S*-phenyl benzenesulfonothioate⁵ was added, and the mixture was stirred for 1 h at room temperature. The mixture was poured into water, and the aqueous layer was extracted with EtOAc. After the organic layer was dried over MgSO₄, the solvent was removed under reduced pressure. The crude was purified by flush column chromatography (0–10%, EtOAc/hexane) to give **16** (80 mg, 40%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.55 (2H, d, *J* = 7.3 Hz), 7.34 (2H, t, *J* = 7.5 Hz), 7.26 (2H, t, *J* = 7.3 Hz), 3.58 (3H, s), 3.50 (2H, s). MS-ESI (*m*/*z*): 215 [M + H]⁺.

Methyl 2-[[(2R,5R)-6-(*benzyloxy*)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]thio]acetate (2c). To a solution of carboxylic acid 1 (138 mg, 0.50 mmol) in CH₂Cl₂ (1.4 mL) were added Et₃N (104 μ L, 0.75 mmol) and 2-oxo-[1,4,2]oxathiazolo[2,3-*a*]pyridin-4-ium chloride 15 (114 mg, 0.60 mmol). The mixture was stirred for 1 h in the dark (solution A). To another solution of methyl 2-(phenyldisulfaneyl)acetate 16 (332 mg, 1.55 mmol) in CH₂Cl₂ (1.4 mL) was added the solution A dropwise under white LEDs irradiation. After 1 h, the solvent was removed under reduced pressure, and the crude was purified by flush column chromatography (5–35%, EtOAc/hexane) to give 2c (58.0 mg, 35%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.44–7.35 (5H, m), 5.04 (1H, d, *J* = 11.4 Hz), 4.90 (1H, d, *J* = 11.4 Hz), 4.75 (1H, d, *J* = 6.9 Hz), 3.72–3.71 (4H, m), 3.50 (1H, d, *J* = 15.6 Hz), 3.33–3.32 (1H, m), 3.28 (1H, d, *J* = 15.6 Hz), 2.81 (1H, dt, *J* = 11.5, 3.0 Hz), 2.35–2.25 (1H, m), 2.01–1.95 (1H, m), 1.69–1.55 (2H, m). MS-ESI (*m*/*z*): 337 [M + H]⁺.

2-[[(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]thio]acetic acid (12). To a solution of 2c (1.22 g, 3.63 mmol) in THF/H₂O (v/v = 1/1, 24 mL) was added 4 M aq LiOH (1.09 mL, 4.35 mmol) at 0 °C. After being stirred for 2 h at 0 °C, 10% aq citric acid was added. The mixture was extracted with EtOAc three times, and the combined organic layers were washed with water and brine before being dried over MgSO₄. The solvent was removed under reduced pressure to give 12 (988 mg, 85%) as pale yellow oil, which was used without further purification.

2-[[(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]thio]acetamide (13). To a solution of **12** (943 mg, 2.93 mmol) in 1,4-dioxane/H₂O (v/v = 9/1, 9.4 mL) were added ammonium hydrogencarbonate (289 mg, 3.66 mmol), Boc₂O (1.02 mL, 4.39 mmol) and pyridine (118 μ L, 1.46 mmol). After being stirred overnight, water was added, and the mixture was extracted EtOAc three times. The combined organic layers were washed with water and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flush column chromatography (50–100%, EtOAc/hexane) to give **13** (170 mg, 18%) as a pale colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.44–7.36 (5H, m), 6.69 (1H, br s), 5.40 (1H, br s), 5.04 (1H, d, *J* = 11.5 Hz), 4.90 (1H, d, *J* = 11.5 Hz), 4.73–4.71 (1H, m), 3.65 (1H, d, *J* = 11.7 Hz), 3.41–3.37 (2H, m), 3.12 (1H, d, *J* = 14.8 Hz), 2.90– 2.87 (1H, m), 2.03–1.99 (1H, m), 1.71–1.65 (2H, m). MS-ESI (*m*/z): 322 [M + H]⁺.

2-[[(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]sulfonyl]acetamide (14). To a solution of 13 (170 mg, 0.53 mmol) in CH₂Cl₂ (1.7 mL) was added 69 wt % *m*-CPBA (331 mg, 1.32 mmol) at 0 °C. After being stirred for 30 min at room temperature, 10% aq Na₂S₂O₃ was added, and the layers were separated. After the organic solvent was removed under reduced pressure, EtOAc was added. The organic layer was washed with 5% aq NaHCO₃ twice and brine before being dried over MgSO₄. After the removal of solvent, the crude was purified by flush column chromatography (10–50%, EtOAc/hexane) to give 14 (138 mg, 74%) as a pale colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.42–7.38 (5H, m), 6.91 (1H, br s), 5.63 (1H, br s), 4.99 (1H, d, *J* = 11.4 Hz), 4.88 (1H, d, *J* = 11.4 Hz), 4.64–4.60 (1H, m), 4.43 (1H, d, *J* = 14.2 Hz), 3.86 (1H, d, *J* = 14.2 Hz), 3.54–3.49 (2H, m), 3.10 (1H, dd, *J*

= 12.2, 3.1 Hz), 2.39–2.26 (1H, m), 2.17–2.09 (2H, m), 1.91–1.84 (1H, m). MS-ESI (*m/z*): 354 [M + H]⁺.

Sodium (2R,5R)-2-[(2-amino-2-oxoethyl)sulfonyl]-7-oxo-1,6-diazabicy-clo[3.2.1]octan-6-yl sulfate (11c). To a solution of 14 (500 mg, 1.42 mmol) in THF/MeOH (v/v = 1/1, 10 mL) was added 5% Pd/C (151 mg, 0.30 wt equiv). After being stirred under a H₂ atmosphere (1 atm) for 45 min, DMF was added to dissolve the precipitation of debenzylated product. The mixture was filtered, and the solvent was removed under reduced pressure to give the product, which was used without further purification. To a solution of the crude debenzylated product in pyridine (5 mL) was added SO₃-pyridine (292 mg, 1.84 mmol). After being stirred for 5 h, the mixture was poured into aq NaHCO₃, and the aqueous layer was washed with CH₂Cl₂ twice. The aqueous solvent was removed under reduced pressure before the crude was applied onto the HP20SS resin and subjected to ODS column chromatography (0–3%, MeCN/H₂O) to give**11c** $(34.2 mg, 6.6%) as a white amorphous solid after lyophilization. ¹H NMR (400 MHz, D₂O) <math>\delta$: 4.96 (1H, t, *J* = 8.3 Hz), 4.32–4.32 (1H, m), 3.70 (1H, d, *J* = 12.4 Hz), 3.46–3.43 (1H, m), 2.43–2.33 (1H, m), 2.23–2.09 (3H, m). HPLC: 93.7% (method-C). Anal. calcd for C₈H₁₂N₃O₈S₂Na(H₂O)_{2.3}: C, 23.62; H, 4.11; N, 10.33; S, 15.76; Na, 5.65. found: C, 23.68; H,3.88; N, 10.40; S, 15.48; Na, 5.58.

tert-Butyl 4-[(*tosylthio*)*methyl*]-1H-*imidazole-1-carboxylate* (19). To a solution of *tert*-butyl 4-(chloromethyl)-1H-imidazole-1-carboxylate⁶ (4.0 g, 18.5 mmol) in acetone (40 mL) was added potassium 4-methylbenzenesulfonothioate (4.4 g, 19.4 mmol). After being stirred for 5 h at reflux, the solvent was removed under reduced pressure, and the crude mixture was dissolved to EtOAc. The organic layer was washed with water and brine before being dried over MgSO₄. After the removal of solvent, the crude was purified by flush column chromatography (5–40%, EtOAc/hexane) to give **19** (4.0 g, 59%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.87 (1H, s), 7.77 (2H, d, *J* = 8.3 Hz), 7.29 (2H, d, *J* = 8.3 Hz), 7.15 (1H, s), 4.19 (2H, s), 2.43 (3H, s), 1.61 (9H, s). MS-ESI (*m*/*z*): 369 [M + H]⁺.

tert-Butyl 4-[[[(2R,5R)-6-(*benzyloxy*)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]thio]methyl]-1Himidazole-1-carboxylate (2d). To a solution of carboxylic acid 1 (120 mg, 0.43 mmol) in CH₂Cl₂ (0.6 mL) were added 2-mercaptopyridine 1-oxide 4 (58 mg, 0.46 mmol) and EDC·HCl (87.0 mg, 0.46 mmol). The mixture was stirred for 1 h in the dark (solution A). To another solution of *tert*-butyl 4-((to-sylthio)methyl)-1H-imidazole-1-carboxylate 19 (320 mg, 0.87 mmol) in CH₂Cl₂ (0.6 mL) was slowly added the solution A under white LEDs irradiation. After being stirred for 30 min, the mixture was directly purified by flush column chromatography (0–40%, EtOAc/hexane) to give 2d (87 mg, 45%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.02 (1H, d, *J* = 0.9 Hz), 7.43 (2H, dd, *J* = 7.5, 1.9 Hz), 7.40–7.35 (3H, m), 7.32 (1H, s), 5.05 (1H, d, *J* = 11.4 Hz), 4.91 (1H, d, *J* = 11.4 Hz), 4.61 (1H, d, *J* = 6.8 Hz), 3.82 (1H, d, *J* = 14.2 Hz), 3.77 (1H, d, *J* = 11.5 Hz), 3.61 (1H, d, *J* = 14.2 Hz), 3.34–3.34 (1H, m), 2.86–2.84 (1H, m), 2.32–2.21 (1H, m), 1.99–1.93 (1H, m), 1.69–1.51 (11H, m). MS-ESI (*m*/z): 445 [M + H]⁺.

tert-Butyl 4-[[[(2R,5R)-6-(*benzyloxy*)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]sulfonyl]methyl]-1H-imidazole-1-carboxylate (17). To a solution of 2d (87 mg, 0.20 mmol) in CH₂Cl₂ (1.3 mL) was added 69 wt % *m*-CPBA (98 mg, 0.39 mmol) at 0 °C. After being stirred for 2 h at 0 °C, aq NaHCO₃ and aq Na₂S₂O₃ were added, and the layers were separated. The organic layer was washed with aq Na-HCO₃ and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flush column chromatography (10–60%, EtOAc/hexane) to give 17 (56 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ : 8.07 (1H, s), 7.70 (1H, s), 7.42–7.37 (5H, m), 5.00 (1H, d, *J* = 11.4 Hz), 4.88 (1H, d, *J* = 11.4 Hz), 4.69 (1H, d, *J* = 14.7 Hz), 4.57 (1H, t, *J* = 7.8 Hz), 4.29 (1H, d, *J* = 14.6 Hz), 3.66 (1H, d, *J* = 12.0 Hz), 3.45–3.44 (1H, m), 3.09 (1H, d, *J* = 10.9 Hz), 2.34–2.26 (1H, m), 2.17–2.00 (2H, m), 1.86–1.78 (1H, m), 1.62 (9H, s). MS-ESI (*m*/z): 477 [M + H]⁺.

(2*R*,5*R*)-2-[[(1*H*-Imidazol-4-yl)methyl]sulfonyl]-6-(benzyloxy)-1,6-diazabicyclo[3.2.1]octan-7-one (18). To a solution of **17** (55 mg, 0.12 mmol) in CH₂Cl₂ (0.55 mL) was added TFA (0.55 mL). After 3 h, the mixture was poured into aq NaHCO₃, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were washed with aq NaHCO₃ and brine before being dried over Na₂SO₄. After the solvent was removed, the crude was purified by flush column chromatography (50–100%, EtOAc/hexane) to give **18** (40 mg, 92%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.69 (1H, s), 7.42–7.40 (6H, br m), 5.01 (1H, d, *J* = 11.4 Hz), 4.91–4.89 (2H, m), 4.45–4.42 (1H, br m), 4.20–4.17 (1H, br m), 3.63 (1H, d, *J* = 11.5 Hz), 3.51–3.49 (1H, br m), 3.12 (1H, d, *J* = 12.5 Hz), 2.35–2.25 (1H, m), 2.14–1.96 (2H, m), 1.87–1.84 (1H, m). MS-ESI (*m*/*z*): 377 [M + H]⁺.

Sodium (2*R*,5*R*)-2-[[(1*H*-imidazol-4-yl)methyl]sulfonyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (11d). To a solution of 18 (39 mg, 0.10 mmol) in MeOH (0.59 mL) was added 5% Pd/C (22 mg, 0.56 wt equiv.). After being stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product, which was used without further purification. To a solution of the crude debenzylated product in pyridine (1.5 mL) was added SO₃-pyridine (99 mg, 0.62 mmol). After being stirred overnight, the mixture was poured into aq NaHCO₃ and the aqueous layer was washed with CH₂Cl₂ twice. The aqueous solvent was removed under reduced pressure, and the crude was applied onto the HP20SS resin and subjected to ODS column chromatography (H₂O only) to give 11d (21 mg, 52%) as a white amorphous solid after lyophilization. ¹H NMR (400 MHz, D₂O) δ : 7.80 (1H, s), 7.42 (1H, s), 4.82–4.79 (2H, m), 4.64 (1H, d, *J* = 14.8 Hz), 4.32 (1H, d, *J* = 2.9 Hz), 3.73 (1H, d, *J* = 12.3 Hz), 3.45 (1H, dd, *J* = 12.4, 3.1 Hz), 2.39–2.28 (1H, m), 2.16–2.07 (3H, m). HPLC: >99.9% (method-C). MS-ESI (*m*/*z*): 365 [M – H]⁻.

4-Nitrobenzyl 2-[[(2R,5R)-2-(methylsulfonyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-acetate (20a). To a solution of 10b (179 mg, 0.814 mmol) in DMF (5 mL) were added 4-nitrobenzyl 2iodoacetate 22a (340 mg, 1.06 mmol) and K₂CO₃ (146 mg, 1.06 mmol). After being stirred overnight,the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄ before the solvent was remover under reduced pressure. The crude was purified by flash column chromatography (30–70% EtOAc/hexane) to give **20a** (294 mg, 87%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.25 (2H, d, *J* = 8.5 Hz), 7.54 (2H, d, *J* = 8.8 Hz), 5.32 (1H, d, *J* = 13.1 Hz), 5.28 (1H, d, *J* = 13.1 Hz), 4.66 (1H, d, *J* = 17.1 Hz), 4.62 (1H, d, *J* = 17.1 Hz), 4.38 (1H, t, *J* = 8.2 Hz), 4.18–4.16 (1H, m), 3.70 (1H, d, *J* = 12.0 Hz), 3.13 (1H, d, *J* = 12.3 Hz), 3.04 (3H, s), 2.41–2.31 (1H, m), 2.25–2.07 (2H, m), 2.00–1.97 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 168.6, 168.5, 148.0, 142.0, 128.7, 124.0, 73.3, 72.5, 65.5, 59.1, 42.8, 37.3, 18.1, 14.1. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₆H₂₀N₃O₈S 414.0966; found 414.0962.

Sodium 2-[[(2R,5R)-2-(methylsulfonyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate (21a). To a solution of **20a** (146 mg, 0.352 mmol) in DMF (2 mL) was added 5% Pd/C (37.5 mg, 0.26 wt equiv). After being stirred under a H₂ atmosphere (1 atm) for 2 h at 0 °C, the mixture was filtered and poured into aq NaHCO₃. After the aqueous layer was washed with EtOAc, the resulting solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give **21a** (116 mg, quant.) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 4.70 (1H, t, *J* = 8.0 Hz), 4.43 (1H, d, *J* = 15.3 Hz), 4.35 (1H, d, *J* = 15.1 Hz), 4.26–4.24 (1H, m), 3.60 (1H, d, *J* = 12.3 Hz), 3.31 (1H, d, *J* = 11.8 Hz), 3.17 (3H, s), 2.38–2.27 (1H, m), 2.21–2.01 (3H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 178.4, 170.9, 77.3, 75.5, 60.6, 46.7, 39.4, 20.6, 17.4. HPLC: >99.9%.

Ethyl 2,2-*difluoro-2-[[(2R,5R)-2-(methylsulfonyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy] acetate* (20b). To a solution of **10b** (523 mg, 2.38 mmol) in DMF (10 mL) were added ethyl 2-bromo-2,2-difluoroacetate **22b** (723 mg, 3.56 mmol) and K₂CO₃ (427 mg, 2.09 mmol). After being stirred for 2.5 h, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (20–60% EtOAc/hexane) to give **20b** (354 mg, 45%) as a white amorphous. ¹H NMR (400 MHz, CDCl₃) δ : 4.46–4.38 (3H, m), 4.08 (1H, dd, *J* = 5.5, 2.9 Hz), 3.79 (1H, d, *J* = 12.4 Hz), 3.32 (1H, d, *J* = 12.4 Hz), 3.05 (3H, s), 2.41–2.33 (1H, m), 2.23–2.00 (3H, m), 1.40 (3H, t, *J* = 7.2 Hz).

Sodium 2,2-*difluoro*-2-*[[(2R,5R)*-2-(*methylsulfonyl*)-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*]*oxy*] *acetate* (21*b*). To a solution of 20b (315 mg, 0.920 mmol) in THF/H₂O (v/v = 2/1, 9.5 mL) was added 1 N aq NaOH (1.01 mL, 1.01 mmol) at 0 °C. After being stirred for 30 min at 0 °C, the reaction was quenched by dry ice. The resulting solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give 21b (284 mg, 92%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 4.84–4.82 (1H, m), 4.26–4.23 (1H, m), 3.69 (1H, d, *J* = 12.5 Hz), 3.43 (1H, d, *J* = 12.4, 2.8 Hz), 3.19 (3H, s), 2.38–2.28 (1H, m), 2.23–2.05 (3H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 172.4, 166.3 (t, ³*J*_{*C*-*F*} = 31.9 Hz), 120.1 (t, ²*J*_{*C*-*F*} = 280.6 Hz), 76.5, 63.8, 46.0, 39.4, 20.3, 17.6. ¹⁹F NMR (377 MHz, D₂O) δ : -83.2 (1H, d, ³*J*_{*F*-*F*} = 134.9 Hz), -83.9 (1H, d, ³*J*_{*F*-*F*} = 136.2 Hz). HPLC: >99.9% (method-E). Anal. calcd for C₉H₁₁F₂N₂O₆SNa(H₂O)_{0.9}: C, 30.67; H, 3.66; F, 10.78; N, 7.95; S, 9.10; Na, 6.52. Found: C, 30.85; H, 3.81; F, 10.47; N, 7.94; S, 8.86; Na, 6.78.

Ethyl (2*S*)-2-*fluoro-2-[[(2<i>R*,5*R*)-2-(*methylsulfonyl*)-7-*oxo-1*,6-*diazabicyclo*[3.2.1]*octan-6-yl*]*oxy*] *acetate* (20*c*). To a solution of **10b** (6.83 g, 31.0 mmol) in DMF (70 mL) were added ethyl 2-bromo-2-fluoroacetate **22c** (8.03 mg, 43.4 mmol) and K₂CO₃ (5.57 g, 40.3 mmol). After being stirred for 3 h, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (30–100% EtOAc/hexane) to give **20c** (4.74 g, 47%) and **20d** (4.18 g, 42%) as a white amorphous. ¹H NMR (400 MHz, CDCl₃) δ : 5.80 (1H, d, ³*J*_{*H*-*F*} = 59.7 Hz), 4.42 (1H, t, *J* = 8.2 Hz), 4.39–4.32 (2H, m), 4.08 (1H, dd, *J* = 5.5, 3.0 Hz), 3.76 (1H, d, *J* = 12.3 Hz), 3.26–3.23 (1H, m), 3.05 (3H, s), 2.41–2.31 (1H, m), 2.25–2.09 (2H, m), 2.06–1.98 (1H, m), 1.37 (3H, t, *J* = 7.2 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 167.8, 162.4 (d, ³*J*_{*C*-*F*</sup> = 29.3 Hz), 106.4 (d, ²*J*_{*C*-*F*</sup> = 239.9 Hz), 73.5, 63.0, 60.7, 42.6, 37.3, 18.0, 14.1, 14.0. ¹⁹F NMR (377 MHz, CDCl₃) δ : –133.9 (d, ³*J*_{*H*-*F*</sup> = 59.9 Hz). HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₁H₁₈FN₂O₆S 325.0864; found 325.0860.}}}

Ethyl (*R*)-2-bromo-2-fluoroacetate (22d).⁸ To a solution of (*R*)-2-bromo-2-fluoroacetic acid^{7,8} (25.7 g, 100 mmol) in CH₂Cl₂ (257 mL) were added EtOH (29.2 mL, 500 mmol) and EDC·HCl (21.1 g, 110 mmol) at 0 °C. After the mixture was stirred for 30 min at 0 °C, diluted aq H₂SO₄ was added. The organic

layer was separated and washed with water before being dried over MgSO₄. The solvent was carefully removed under reduced pressure (200 torr, 20 °C) to give **22d** (47.7 g, 38.7 wt%, quant.) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 6.56 (1H, d, ³*J*_{*H*-*F*} = 50.6 Hz), 4.35 (2H, q, *J* = 7.1 Hz), 1.35 (3H, t, *J* = 7.1 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 164.7 (d, ³*J*_{*C*-*F*} = 25.7 Hz), 80.9 (d, ²*J*_{*C*-*F*} = 263.4 Hz), 63.1, 13.9. ¹⁹F NMR (377 MHz, CDCl₃) δ : -150.69 (d, ³*J*_{*H*-*F*} = 50.4 Hz).

Ethyl (2*R*)-2-*fluoro-2-[[(2<i>R*,5*R*)-2-(*methylsulfonyl*)-7-*oxo-1*,6-*diazabicyclo*[3.2.1]*octan-6-yl*]*oxy*] *acetate* (20*d*). To a solution of **10b** (142 mg, 0.645 mmol) in DMF (2 mL) were added 38.7 wt% ethyl (*R*)-2-bromo-2-fluoroacetate **22d** (370 mg, 0.774 mmol) and DBU (0.117 mL, 0.774 mmol) at 0 °C. After being stirred for 1.5 h at 0 °C, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (20–50% EtOAc/hexane) to give **20d** (104 mg, 50%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 5.86 (1H, d, $^{3}J_{H-F} = 52.5$ Hz), 4.41 (1H, t, J = 8.1 Hz), 4.37–4.28 (2H, m), 4.09 (1H, dd, J = 5.2, 2.9 Hz), 3.75 (1H, d, J = 12.4 Hz), 3.22 (1H, dt, J = 12.3, 1.4 Hz), 3.04 (3H, s), 2.39–2.31 (1H, m), 2.23–1.99 (3H, m), 1.34 (3H, t, J = 7.2 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : -136.7 (d, $^{3}J_{H-F} = 51.8$ Hz). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₁H₁₈FN₂O₆S 325.0864; found 325.0861.

Sodium (2*S*)-2-*fluoro*-2-*[[*(2*R*,5*R*)-2-(*methylsulfonyl*)-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*] *oxy]acetate* (21*c*). To a solution of **20c** (90.0 mg, 0.278 mmol) in THF/H₂O (v/v = 2/1, 3 mL) was added 1 N aq NaOH (0.278 mL, 0.278 mmol) at 0 °C. After being stirred for 30 min at 0 °C, the reaction was quenched by dry ice. The aqueous layer was washed with diisopropyl ether, and the resulting solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–15%, MeCN/H₂O) to give **21c** (69.3 mg, 79%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.80 (1H, d, ³*J*_{*H*-*F*} = 57.0 Hz), 4.79–4.76 (1H, m), 4.19 (1H, t, *J* = 4.0 Hz), 3.64 (1H, d, *J* = 12.4 Hz), 3.34 (1H, dt, *J* = 12.3, 1.4 Hz), 3.18 (3H, s), 2.37–2.26 (1H, m), 2.21–2.02 (3H, m). HPLC: >99.9%. Anal. calcd for C₉H₁₂FN₂O₆SNa(H₂O)_{1.8}: C, 30.83; H, 4.48; F, 5.42; N, 7.99; S, 9.14; Na, 6.56. Found: C, 30.81; H, 4.62; F, 5.22; N, 8.10; S, 8.96; Na, 6.63.

Sodium (2*R*)-2-*fluoro*-2-*[[(2R,5R)*-2-(*methylsulfonyl*)-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*] *oxy]acetate* (21*d*). To a solution of 20d (102 mg, 0.315 mmol) in THF/H₂O (v/v = 2/1, 3 mL) was added 1 N aq NaOH (0.315 mL, 0.315 mmol) at 0 °C. After being stirred for 30 min at 0 °C, the reaction was quenched by dry ice. The aqueous layer was washed with diisopropyl ether, and the resulting solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–15%, MeCN/H₂O) to give 21d (86.2 mg, 86%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.80 (1H, d, ³*J*_H. *F* = 58.6 Hz), 4.79–4.75 (1H, m), 4.27–4.26 (1H, m), 3.66 (1H, d, *J* = 12.4 Hz), 3.37–3.34 (1H, m), 3.18 (3H, s), 2.38–2.27 (1H, m), 2.21–2.05 (3H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 169.0 (³*J*_{C-F} = 27.1 Hz), 168.7, 107.7 (²*J*_{C-F} = 240.6 Hz), 73.2, 59.9, 43.2, 36.4, 17.3, 14.5. ¹⁹F NMR (377 MHz, D₂O) δ : -130.2 (³*J*_{H-F} = 58.6 Hz). HPLC: >99.9%. Anal. calcd for C₉H₁₂FN₂O₆SNa(H₂O)_{0.8}: C, 32.50; H, 4.12; F, 5.71; N, 8.42; S, 9.64; Na, 6.91. Found: C, 32.60; H, 4.28; F, 5.58; N, 8.61; S, 9.15; Na, 6.75.

第4節

(2*R*,5*R*)-6-(*Benzyloxy*)-2-[(*R*)-methylsulfinyl]-1,6-diazabicyclo[3.2.1]octan-7-one (23). To a solution of 2b (2.47 g, 8.89 mmol) in CH₂Cl₂ (25 mL) was added 72 wt% *m*-CPBA (2.34 g, 9.78 mmol) at -78 °C. After stirred for 2 hour at -78 °C, the mixture was poured into aqueous sodium thiosulfate solution and the layers were separated. The aqueous layer was extracted with ethyl acetate (30 mL × 3) and the combined organic layers were dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (0–10% MeOH/EtOAc) to obtain 23 (2.31 g, 88%, dr = 91/9) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.43–7.37 (5H, m), 5.04 (1H, d, *J* = 11.3 Hz), 4.90 (1H, d, *J* = 11.5 Hz), 4.02 (1H, dd, *J* = 7.5, 4.3 Hz), 3.39–3.39 (1H, m), 3.18 (1H, d, *J* = 11.8 Hz), 3.03 (1H, d, *J* = 11.8 Hz), 2.68 (3H, s), 2.39–2.36 (1H, m), 2.17–2.11 (2H, m), 1.80–1.77 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.9, 135.5, 129.3, 128.9, 128.6, 78.4, 76.3, 57.5, 45.7, 37.2, 19.6, 15.9. HRMS (ESI) *m*/z: [M + H]⁺ Calcd for C₁₄H₁₉N₂O₃S 295.1111; Found 295.1108. Melting point: 96-99 °C.

N-[(1R)-[(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl](methyl)(oxo)- λ^{6} sulfaneylidene]-2,2,2-trifluoroacetamide (24). To a solution of 23 (592 mg, 2.01 mmol) in CH₂Cl₂ (10 mL) were added 2,2,2-trifluoroacetamide (445 mg, 4.02 mmol), magnesium oxide (324 mg, 8.04 mmol), Rh₂(OAc)₄ (44.4 mg, 0.101 mmol) and PhI(OAc)₂ (971 mg, 3.02 mmol). After stirred overnight, the reaction mixture was filtered and the solvent was removed in vacuo. The crude product was purified by flash column chromatography (20–50% EtOAc/hexane) to obtain **24** (632 mg, 78%) as a white amorphous. ¹H NMR (400 MHz, CDCl₃) δ : 7.39 (5H, s), 4.99 (1H, d, *J* = 11.5 Hz), 4.87 (1H, d, *J* = 11.5 Hz), 4.49–4.47 (1H, m), 3.70 (1H, d, *J* = 12.3 Hz), 3.55 (3H, s), 3.47–3.46 (1H, m), 3.06 (1H, d, *J* = 12.0 Hz), 2.55–2.50 (1H, m), 2.21–2.08 (2H, m), 1.95–1.90 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.6, 164.4 (q, ³*J*_{C-F} = 38.1 Hz), 135.1, 129.3, 129.1, 128.7, 115.9 (q, ²*J*_{C-F} = 288.1 Hz), 78.4, 75.2, 57.7, 42.6, 35.7, 17.9, 14.4. ¹⁹F NMR (377 MHz, CDCl₃) δ : –76.12 (3F, s). HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₆H₁₉F₃N₃O₄S 406.1043; Found 406.1039.

(2*R*,5*R*)-6-Hydroxy-2-[(*R*)-methylsulfinyl]-1,6-diazabicyclo[3.2.1]octan-7-one (25). To a solution of 23 (1.53 g, 5.20 mmol) in MeOH (15 mL) were added 10% Pd(OH)₂ on carbon (365 mg, 0.24 wt equiv) and DABCO (11.7 mg, 0.10 mmol). After stirred at room temperature under H₂ atmosphere (1 atm) for 1 hour, the mixture was filtered. The solvent was removed *in vacuo* to afford 25 (941 mg, 89%) as a white solid, which was used to the next step without any purification. ¹H NMR (400 MHz, D₂O) δ : 4.20 (1H, t, *J* = 5.9 Hz), 3.95–3.94 (1H, m), 3.34–3.31 (2H, m), 2.77 (3H, s), 2.39–2.29 (1H, m), 2.19–2.14 (2H, m), 1.98–1.94 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 166.4, 74.4, 58.9, 46.3, 34.9, 18.6, 15.2. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₇H₁₃N₂O₃S 205.0641; Found 205.0642.

Neopentyl chlorosulfate (28).⁹ To a solution of sulfuryl chloride (2.00 mL, 24.6 mmol) in Et₂O (2 mL) was added a solution of neopentyl alcohol (2.39 g, 27.1 mmol) and pyridine (1.99 mL, 24.6 mmol) in Et₂O (3 mL) at -78 °C. After stirred at room temperature for 2 hours, the mixture was diluted with Et₂O (30 mL) and the organic phase was washed with 10% citric acid aq, water and brine and dried over Na₂SO₄. The solvent was removed under reduced pressure to afford **28** (3.96 g, 86%) as a colorless oil, which was used without a further purification. ¹H NMR (400 MHz, CDCl₃) δ : 4.18 (2H, s), 1.05 (9H, s).

(2R,5R)-2-[(R)-Methylsulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl neopentyl sulfate (26). To a solution of 25 (300 mg, 1.47 mmol) in DMF (3 mL) were added DBU (0.288 mL, 1.91 mmol) and chlorosulfate 28 (274 mg, 1.47 mmol) at 0 °C and stirred for 15 minutes. The reaction mixture was

poured into 10% aqueous citric acid solution and the aqueous layer was extracted with ethyl acetate (20 mL × 4). The combined organic layers were washed with water, dried over MgSO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash column chromatography (0–10% MeOH/EtOAc) to afford **26** (281 mg, 54%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ : 4.42 (1H, d, *J* = 8.8 Hz), 4.26–4.26 (1H, br m), 4.18 (1H, d, *J* = 8.8 Hz), 4.11 (1H, t, *J* = 6.3 Hz), 3.45 (1H, d, *J* = 12.3 Hz), 3.34 (1H, d, *J* = 12.3 Hz), 2.69 (3H, s), 2.52–2.43 (1H, m), 2.29–2.12 (2H, m), 2.06–2.01 (1H, m), 1.00 (9H, s). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.4, 85.2, 76.9, 59.9, 44.9, 37.1, 31.9, 25.8, 19.3, 15.9. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₂H₂₃N₂O₆S₂ 355.0992; Found 355.0989.

Sodium (*2R*,*5R*)-*2-[(R)-methylsulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate* (*27*). To a solution of **26** (286 mg, 0.807 mmol) in DMF (3 mL) was added sodium thiolate **29** (187 mg, 1.21 mmol). After stirred overnight, the solvent was removed *in vacuo*. The crude product was applied onto the HP20SS resin and subjected to ODS column chromatography (H₂O only) to afford **27** (188 mg, 76%) as a white amorphous after lyophilization. ¹H NMR (400 MHz, D₂O) δ : 4.34–4.31 (2H, m), 3.47 (1H, d, *J* = 12.0 Hz), 3.39 (1H, d, *J* = 12.3 Hz), 2.79 (3H, s), 2.38–2.34 (1H, m), 2.20–2.16 (2H, m), 2.05–2.01 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 167.9, 75.3, 59.2, 45.3, 34.8, 18.5, 15.5. Anal. Calcd for C₇H₁₁N₂O₆S₂Na(H₂O)_{1.3}: C, 25.50; H, 4.16, N, 8.50; S, 19.45; Na, 6.97. Found: C, 25.86; H, 4.02; N, 8.25; S, 18.95; Na, 7.24.

Ethyl 2,2-*difluoro-2-[[(2R,5R)-2-[(R)-methylsulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl] oxy]acetate* (*30*). To a solution of **25** (402 mg, 1.97 mmol) in DMF (10 mL) were added a solution of ethyl 2-bromo-2,2-difluoroacetate **22b** (599 mg, 2.95 mmol) and K₂CO₃ (354 mg, 2.56 mmol). After being stirred for 3 h, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (0–10% MeOH/EtOAc) to give **30** (258 mg, 40%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 4.44–4.37 (2H, m), 4.15–4.12 (1H, m), 4.06–4.04 (1H, br m), 3.42 (1H, d, *J* = 12.2 Hz), 3.30 (1H, d, *J* = 12.3 Hz), 2.69 (3H, s), 2.49–2.41 (1H, m), 2.29–2.11 (2H, m), 2.06–1.98 (1H, m), 1.40 (3H, t, *J* = 7.2 Hz). MS-ESI (*m*/*z*): 327 [M + H]⁺

Sodium 2,2-*difluoro*-2-[[(2*R*,5*R*)-2-[(*R*)-*methylsulfinyl*]-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*] *oxyJacetate* (31). To a solution of **30** (258 mg, 0.791 mmol) in THF/H₂O (v/v = 2/1, 4.5 mL) was added 1 N aq NaOH (0.791 mL, 0.791 mmol) at 0 °C. After being stirred for 30 min at 0 °C, the reaction was quenched by dry ice. The organic solvent was removed under reduced pressure, and the resulting solution was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give **31** (173 mg, 68%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 4.38 (1H, t, *J* = 6.0 Hz), 4.24–4.21 (1H, br m), 3.48 (1H, d, *J* = 12.3 Hz), 3.39 (1H, d, *J* = 12.0 Hz), 2.78 (3H, s), 2.38–2.31 (1H, m), 2.24–2.14 (2H, m), 2.08–2.05 (1H, m). ¹³C{1H} NMR (100 MHz, D₂O) δ : 172.0, 166.1 (t, ³*J*_{C-F} = 31.9 Hz), 120.0 (t, ²*J*_{C-F} = 281.0 Hz), 78.4, 63.5, 47.7, 37.6, 21.3, 18.4. ¹⁹F NMR (377 MHz, D₂O) δ : -83.1 (d, ³*J*_{F-F} = 136.2 Hz), -83.7 (d, ³*J*_{F-F} = 134.9 Hz). HPLC: 88.1% (method-A). Anal. calcd for C₉H₁₁F₂N₂O₅SNa(H₂O)_{1.3}: C, 31.46; H, 3.99; F, 11.06; N, 8.15; S, 9.33; Na, 6.69. found: C, 31.69; H, 4.04; F, 11.20; N, 8.33; S, 9.03; Na, 6.71.

Benzhydryl (R)-2-bromo-2-fluoroacetate (22e). To a suspension of **121**^{7, 8} (50.0 g, 180 mmol) in EtOAc (500 mL) and H₂O (250 mL) was added 64% aq H₂SO₄ (21.5 mL, 216 mmol) at 0 °C. After the mixture was stirred at room temperature for 15 min, the organic layer was separated and washed with water and brine. To the EtOAc solution was slowly added diazodiphenylmethane **122** (35.7 g, 184 mmol) in EtOAc (40 mL) at 0 °C. After the mixture was stirred at room temperature for 1 h, aq NaHCO₃ was added. The aqueous layer was extracted with EtOAc twice, and the combined organic layers were washed with brine before being dried over MgSO₄. The solvent was removed under reduced pressure to give **22e** (62.6 g, 90.2 wt%, 97%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.37–7.32 (10H, m), 6.98 (1H, s), 6.66 (1H, d, ³*J*_{H-F} = 50.4 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 163.6 (d, *J* = 25.7 Hz), 138.5, 138.5, 128.7, 128.7, 128.6, 128.4, 127.3, 126.9, 80.9 (d, ²*J*_{C-F} = 264.8 Hz). ¹⁹F NMR (377 MHz, CDCl₃) δ : -150.69 (d, ³*J*_{H-F} = 50.4 Hz).

Benzhydryl (2*R*)-2-*fluoro*-2-*[[*(2*R*,5*R*)-2-*[*(*R*)-*methylsulfinyl]*-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*]*oxy*]*acetate* (32). To a solution of 23 (15.1 g, 51.1 mmol) in MeOH (150 mL) were added 10% Pd(OH)₂ on carbon (3.59 g, 0.24 wt eq) and DABCO (229 mg, 2.05 mmol, 0.04 eq). After being stirred at room temperature under H₂ atmosphere (1 atm) for 1 h, the mixture was filtered. The solvent was removed *in vacuo* to afford debenzylated product **25** as a white solid. To a solution of the debenzylated product and DBU (8.48 mL, 56.2 mmol, 1.1 eq) in DMF (50 mL) was added a solution of **22e** (19.8 g, 61.3 mmol, 1.20 eq) in DMF (30 mL) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was poured into 5% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with brine and dried over MgSO₄. The solvent was removed under reduced pressure to give a yellow solid. The solid was washed with ^{*i*}PrOAc to give **32** (13.1 g, 57% over 2 steps) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.37–7.31 (10H, m), 6.95 (1H, s), 5.98 (1H, d, ³*J*_{H-F} = 53.2 Hz), 4.08 (1H, t, *J* = 6.1 Hz), 3.97–3.95 (1H, br m), 3.19 (1H, d, *J* = 12.0 Hz), 2.68–2.65 (1H, m), 2.65 (3H, s), 2.41–2.33 (1H, m), 2.23–2.07 (2H, m), 1.97–1.89 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 167.0, 162.1 (d, ³*J*_{C-F} = 35.2 Hz), 138.6, 138.5, 128.7, 128.5, 128.4, 128.4, 127.6, 127.1, 105.4 (d, ²*J*_{C-F} = 238.4 Hz), 79.7, 76.7, 60.8, 44.5, 37.0, 19.1, 15.8. ¹⁹F NMR (377 Hz, CDCl₃) δ : –134.1 (d, ³*J*_{H-F} = 53.1 Hz). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₂₂H₂₄N₂O₅FS 447.1384; found 447.1385.

Sodium (2*R*)-2-*fluoro*-2-*[[(2R,5R)*-2-*[(R)-methylsulfinyl]*-7-*oxo*-1,6-*diazabicyclo[3.2.1]octan*-6*yl]oxyJacetate* (33). To a solution of 32 (50.0 g, 112 mmol) in THF/H₂O (v/v = 2/1, 915 mL) was added 1 N aq NaOH (112 mL, 112 mmol) at 0 °C. After being stirred for 20 min at 0 °C, the reaction was quenched by dry ice. The organic solvent was removed under reduced pressure, and the resulting solution was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give 33 (26.5 g, 78%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.81 (1H, d, *J* = 58.5 Hz), 4.32 (1H, t, *J* = 6.3 Hz), 4.24–4.22 (1H, br m), 3.42 (1H, d, *J* = 12.0 Hz), 3.30 (1H, d, *J* = 12.0 Hz), 2.77 (3H, s), 2.38–2.29 (1H, m), 2.23–2.12 (2H, m), 2.07–1.99 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.9 (d, ³*J*_{C-F} = 27.1 Hz), 171.4, 110.7 (d, ²*J*_{C-F} = 241.4 Hz), 78.3, 62.6, 48.1, 37.7, 21.4, 18.5. ¹⁹F NMR (377 MHz, D₂O) δ : -130.2 (d, ³*J*_{H-F} = 59.9 Hz). HPLC: >99.9% (method-A). Anal. calcd for C₉H₁₂FN₂O₅SNa(H₂O)_{2.1}: C, 31.79; H, 4.80; F, 5.59; N, 8.24; S, 9.43; Na, 6.76. found: C, 31.81; H, 4.83; F, 5.40; N, 8.45; S, 9.28; Na, 6.64.

tert-Butyl 2-(tosylthio)acetate (40). To a solution of *tert*-butyl 2-bromoacetate (20.0 g, 103 mmol) in DMF (100 mL) was added potassium 4-methylbenzenesulfonothioate (23.2 g, 103 mmol), and the mixture was stirred for 1 h. The mixture was diluted with EtOAc, and the organic layer was washed with water twice before being dried over Na₂SO₄. The solvent was removed under reduced pressure to give **40** (31.5 g, quant.) as a pale yellow oil, which was used without further purification. ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (2H, d, *J* = 8.3 Hz), 7.35 (2H, d, *J* = 8.2 Hz), 3.72 (2H, s), 2.45 (3H, s), 1.39 (9H, s). MS-ESI (*m/z*): 303 [M + H]⁺.

tert-Butyl 2-[[(2R,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]thio]acetate (34). To a solution of carboxylic acid **1** (41.5 g, 150 mmol) in CH₂Cl₂ (415 mL) were added 2-mercaptopyridine 1-oxide **4** (19.1 g, 150 mmol) and EDC·HCl (28.8 mg, 150 mmol). The mixture was stirred for 1 h in the dark (solution A). To another solution of **40** (136 g, 451 mmol) in CH₂Cl₂ (415 mL) was slowly added the solution A at 0 °C under white LEDs irradiation. After being stirred for 30 min at 0 °C, diluted aq HCl was added, and the layers were separated. The organic layer was washed with water and brine before being dried over MgSO₄. The solvent was removed under reduced pressure to give the crude product. To a slurry of silica-gel (100 g) in EtOAc/Hexane (v/v = 1/4, 500 mL) was added a solution of the crude product in EtOAc (100mL) at 0 °C. After being stirred for 15 min, the mixture was filtered, and the silica-gel was washed with EtOAc/hexane (v/v = 2/1) three times. The combined solvents were removed to give the roughly purified crude **34**, which was used without further purification.

tert-Butyl 2-*[(R)-[(2R,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]sulfinyl]acetate* (*35*). To a solution of the crude **34** in CH₂Cl₂ (200 mL) was slowly added a solution of 65 wt % *m*-CPBA (39.8 g, 150 mmol) in CH₂Cl₂ (400 mL) at -78 °C. After being stirred for 30 min at -78 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the organic solvent was removed under reduced pressure. The aqueous layer was extracted with EtOAc, and the organic layer was washed with brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flush column chromatography (0–70%, EtOAc/hexane) to give **35** (21.5 g, 36%, dr = 88/12) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.42–7.37 (5H, m), 5.03 (1H, d, *J* = 11.4 Hz), 4.89 (1H, d, *J* = 11.4 Hz), 4.31–4.28 (1H, m), 3.89 (1H, d, *J* = 14.7 Hz), 3.59 (1H, d, *J* = 14.4 Hz), 3.40–3.39 (1H, m), 3.17 (1H, d, *J* = 11.9 Hz), 3.03–3.00 (1H, m), 2.39–2.32 (1H, m), 2.19–2.10 (2H, m), 1.83–1.74 (1H, m), 1.49 (9H, s). MS-ESI (*m*/z): 395 [M + H]⁺.

2-[(R)-[(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]sulfinyl]acetic acid (36).To 35 (21.5 g, 54.6 mmol) was added TFA (150 mL) at 0 °C. After being stirred for 3 h at 0 °C, the solvent was removed under reduced pressure. The crude was triturated with EtOAc to give 36 (15.9 g, 86%) as a white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ: 13.21 (1H, br s), 7.45–7.35 (5H, m), 4.94 (1H, d, *J* = 12.0 Hz), 4.91 (1H, d, *J* = 11.6 Hz), 4.30 (1H, t, *J* = 6.4 Hz), 3.97 (1H, d, *J* = 14.9 Hz), 3.78–3.75 (1H, br m), 3.60 (1H, d, *J* = 14.7 Hz), 3.27 (1H, d, *J* = 11.9 Hz), 2.98 (1H, d, *J* = 11.6 Hz), 2.30–2.20 (1H, m), 1.95–1.80 (3H, m). MS-ESI (*m*/*z*): 339 [M + H]⁺.

2-[(R)-[(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]sulfinyl]acetamide (37). To a solution of **36** (15.6 g, 46.2 mmol) in CH₂Cl₂ (109 mL) were added HOSu (6.4 g, 55.5 mmol) and EDC·HCl (10.6 g, 55.5 mmol) at 0 °C. After being stirred for 2.5 h at room temperature, the mixture was cooled to -50 °C (solution A). To another solution of 28% aq ammonia (9.4 mL, 139 mmol) in CH₂Cl₂ (47 mL) was added the solution A at -50 °C. After being stirred for 1 h at room temperature, the mixture was poured into 10% aq citric acid, which was saturated with NaCl, and the aqueous layer was extracted with CH₂Cl₂ three times. The combined organic layers were washed with aq NaHCO₃, which was saturated with NaCl, before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flush column chromatography (0–10%, MeOH/EtOAc) to give **37** (12.5 g, 80%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.43–7.37 (5H, m), 6.60 (1H, br s), 5.60 (1H, br s), 5.03 (1H, d, J = 11.5 Hz), 4.89 (1H, d, J = 11.4 Hz), 4.31 (1H, dd, J = 7.6, 5.2 Hz), 3.86 (1H, d, J = 14.1 Hz), 3.57 (1H, d, J = 14.2 Hz), 3.42–3.40 (1H, br m), 3.10 (1H, d, J = 11.8 Hz), 3.06–3.03 (1H, m), 2.36–2.12 (3H, m), 1.84–1.75 (1H, m). MS-ESI (*m*/z): 338 [M + H]⁺.

(2*R*,5*R*)-2-[(*R*)-(2-Amino-2-oxoethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl neopentyl sulfate (38). To a solution of 37 (1.00 g, 2.96 mmol) in MeOH (40 mL) were added 10% Pd(OH)₂ on carbon (0.83 g, 0.83 wt equiv) and DABCO (13 mg, 0.12 mmol). After being stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product, which was used without further purification. To a solution of the crude debenzylated product in DMF (5 mL) were added Et₃N (0.82 mL, 5.93 mmol) and neopentyl chlorosulfate 27 (0.83 g, 4.45 mmol) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was poured into brine, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄ before the solvent was removed under reduced pressure. The crude was purified by flush column chromatography (0–10%, MeOH/EtOAc) to give **38** (0.72 g, 61%) as a white solid. ¹H NMR (400 MHz, methanol-*d*₄) δ : 4.56 (1H, t, *J* = 6.6 Hz), 4.40 (1H, d, *J* = 8.8 Hz), 4.27–4.24 (1H, br m), 4.16 (1H, d, *J* = 8.8 Hz), 3.92 (1H, d, *J* = 13.9 Hz), 3.67 (1H, d, *J* = 13.9 Hz), 3.56 (1H, d, *J* = 12.6 Hz), 3.33–3.31 (1H, m), 2.49–2.38 (1H, m), 2.21–2.03 (3H, m), 0.99 (9H, s). MS-ESI (*m*/z): 398 [M + H]⁺.

Sodium (2*R*,5*R*)-2-[(*R*)-(2-amino-2-oxoethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (39). To a solution of **38** (100 mg, 0.252 mmol) in MeCN/H₂O (v/v = 1/1, 2 mL) was added sodium 1,3,4-thiadiazole-2-thiolate (35.3 mg, 0.252 mmol). After being stirred overnight, water was added, and the aqueous layer was washed with EtOAc twice. The aqueous solution was applied onto the HP20SS resin and subjected to ODS column chromatography (0–3%, MeCN/H₂O) to give **39** (46.0 mg, 52%) as a white amorphous solid after lyophilization. ¹H NMR (400 MHz, D₂O) δ : 4.59 (1H, t, *J* = 6.3 Hz), 4.33–4.31 (1H, br m), 4.16 (1H, d, *J* = 14.4 Hz), 3.88 (1H, d, *J* = 14.1 Hz), 3.47–3.39 (2H, m), 2.41–2.32 (1H, m), 2.26–2.15 (2H, m), 2.10–2.02 (1H, m). HPLC: 98.6% (method-F). Anal. Calcd for C₈H₁₂N₃O₇S₂Na(H₂O)_{1.1}: C, 26.03; H, 3.88; N, 11.38; S, 17.37; Na, 6.23. Found: C, 26.03; H, 3.93; N, 11.72; S, 17.23; Na, 5.69.

第5節

S-(Pyridin-2-yl) (2R,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-sulfonothioate (42). To a solution of the carboxylic acid 1 (2.00 g, 7.24 mmol) in CH₂Cl₂ (20 mL) were added Et₃N (1.51 mL, 10.9 mmol) and salt 15 (1.65 g, 8.69 mmol). The reaction mixture was stirred at room temperature for 1 hour in the dark (solution A). To another flask was added CH_2Cl_2 (20 mL) and cooled to -78 °C. After liquid sulfur dioxide (20 mL, 7.24 mmol) was added, an inner temperature was raised to -15 °C. Under white light irradiation using four LED lamps, the solution A was slowly added by a syringe wrapped in aluminum foil while maintaining the inner temperature under -10 °C. After the reaction mixture was stirred at 0 °C for 2 hours, the solvent was removed and water was added. The aqueous layer was extracted with EtOAc (30 mL \times 2) and the combined organic layers were washed with Na-HCO₃ aq and brine. After dried over MgSO₄, the solvent was removed *in vacuo*. The crude product was purified by flash column chromatography (10–70% EtOAc/hexane) to obtain 42 (1.07 g, 37%) as a white amorphous. ¹H NMR (400 MHz, CDCl₃) δ: 8.67 (1H, d, *J* = 4.0 Hz), 7.78–7.75 (2H, m), 7.41–7.35 (6H, m), 5.09 (1H, t, J = 8.2 Hz), 5.00 (1H, d, J = 11.5 Hz), 4.88 (1H, d, J = 11.5 Hz), 3.53 (1H, d, J = 12.3 Hz), 3.48–3.47 (1H, m), 3.13 (1H, d, J = 12.0 Hz), 2.37–2.31 (1H, m), 2.25–2.08 (2H, m), 1.88–1.80 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ: 166.8, 151.2, 150.7, 138.0, 135.4, 131.1, 129.3, 128.9, 128.6, 124.8, 79.6, 78.2, 57.8, 43.6, 18.5, 17.4. HRMS (ESI) m/z: [M + H]⁺ Calcd for C₁₈H₂₀N₃O₄S₂ 406.0890; Found 406.0885.

(2S,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-sulfonamide (43b). To a solution of 42 (40.0 mg, 0.099 mmol) in DMF (0.40 mL) were added 1,2-dibromo-1,1,2,2-tetrachloroethane (257 mg, 0.789 mmol) and 7 M methanol solution of ammonia (42.3 μ L, 0.296 mmol). After stirred for 2 hours, 0.5 N HCl aq was added. The aqueous layer was extracted with EtOAc (10 mL × 2) and the combined organic layers were washed with water and brine. After dried over MgSO₄, the solvent was removed *in vacuo*. The crude product was purified by flash column chromatography (0–60% EtOAc/hexane) to obtain 43b (2.00 mg, 6.5%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.40–7.38 (5H, m), 5.12 (2H, s), 5.04 (1H, d, *J* = 11.5 Hz), 4.91 (1H, d, *J* = 11.3 Hz), 4.20 (1H, dd, *J* = 12.9, 4.1 Hz), 3.44 (1H, d, *J* = 11.5 Hz), 3.38–3.38 (1H, br m), 2.89 (1H, d, *J* = 11.5 Hz), 2.31–2.28 (2H, m), 2.14–2.07 (1H, m), 1.80–1.75 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 166.3, 135.1, 129.4, 129.1, 128.7, 78.5, 78.3, 58.2, 54.8, 23.2, 21.1. HRMS (ESI) *m*/*z*: [M + H]⁺ Calcd for C₁₃H₁₈N₃O₄S 312.1013; Found 312.1010.

(*Tosylthio*)*methyl acetate* (52). To a white suspension of potassium 4-methylbenzenesulfonothioate (5.00 g, 22.1 mmol) in MeCN (20 mL) were added chloromethyl acetate (3.36 g, 30.9 mmol), NaI (3.31 g, 22.1 mmol) and DMF (15 mL). After stirred overnight, water was added and the mixture was extracted with EtOAc (40 mL × 2). The combined organic layers were dried over MgSO₄ and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (0-33% EtOAc/hexane) to obtain **52** (4.86 g, 85%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.84 (2H, d, *J* = 8.3 Hz), 7.35 (2H, d, *J* = 8.3 Hz), 5.58 (2H, s), 2.46 (3H, s), 1.87 (3H, s). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 169.6, 145.1, 142.9, 129.8, 127.2, 67.0, 21.7, 20.4. HRMS (ESI) *m/z*: [M + Na]+ Calcd for C₁₀H₁₂O₄S₂Na 283.0069; Found 283.0066.

[[(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]sulfonyl]methyl acetate (50). To a solution of carboxylic acid 1 (20.0 g, 72.4 mmol) and 2-mercaptopyridine 1-oxide 4 (9.20 g, 72.4 mmol) in CH₂Cl₂ (200 mL) was added EDC·HCl (13.9 g, 72.4 mmol). The solution was stirred for 1 hours at room temperature in the dark (solution A). Under white light irradiation using four LED lamps, solution A was slowly added to a solution of thiosulfonate 52 (56.5 g, 217 mmol) in CH₂Cl₂ (200 mL) at 0 °C over 20 minutes by a liquid feeding pump. After the reaction mixture was stirred at 0 °C for 20 minutes, the organic layer was washed with water (300 mL) and dried over MgSO₄. After the solvent was removed *in vacuo*, the crude product was purified by flash column chromatography (0–40% EtOAc/hexane) to obtain **49** as a mixture of thiosulfonate **52** (25.6 g, 49 wt% purity). The product was used without any further purification. To a solution of **49** (25.6 g, 49 wt% purity) in CH₂Cl₂ (256 mL) was added 70 wt% *m*-CPBA (23.0 g, 93.3 mmol) at 0 °C. After stirred at room temperature for 2 hours, an aqueous solution of Na₂S₂O₃ and NaHCO₃ was added at 0 °C and the organic solvent was removed under reduced pressure. The aqueous layer was extracted with EtOAc (200 mL × 2) and the combined organic layers were washed with NaHCO₃ aq and dried over MgSO₄. After the solvent was removed *in vacuo*, the crude product was purified by flash column chromatography (25–50% EtOAc/hexane) to obtain **50** as a white amorphous (12.6 g, 47%). ¹H NMR (400 MHz, CDCl₃) δ : 7.39–7.38 (5H, m), 5.57 (1H, d, *J* = 12.0 Hz), 5.00 (2H, dd, *J* = 11.7, 2.6 Hz), 4.87 (1H, d, *J* = 11.5 Hz), 4.61 (1H, t, *J* = 8.3 Hz), 3.52 (1H, d, *J* = 12.3 Hz), 3.44–3.43 (1H, m), 3.06 (1H, d, *J* = 12.0 Hz), 2.31–2.28 (1H, m), 2.23 (3H, s), 2.17–2.03 (2H, m), 1.88–1.81 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 168.7, 166.9, 135.3, 129.3, 129.0, 128.7, 78.3, 70.1, 69.4, 57.6, 42.9, 20.4, 18.0, 13.3. HRMS (ESI) *m/z*: [M + H]⁺ Calcd for C₁₆H₂₁N₂O₆S 369.1115; Found 369.1113.

(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-sulfonamide (43a). Method A (Scheme 1-16): To a solution of thiosulfonate 42 (75.9 mg, 0.187 mmol) in THF/H₂O (v/v = 10/1, 0.84mL) was added NaSPh (27.5 mg, 0.187 mmol). After the mixture was stirred at room temperature for 3 hours, $H_2O(10 \text{ mL})$ was added and the aqueous layer was washed with EtOAc ($10 \text{ mL} \times 2$). The aqueous solvent was partially removed under reduced pressure, the resulting aqueous sodium sulfinate 48 solution was equally divided into two flasks and one of the solution was used to the next step. To the aqueous solution of 48 (ca. 1.5 mL) were added NaOAc (19.2 mg, 0.23 mmol) and (aminooxy)sulfonic acid (13.2 mg, 0.12 mmol). After stirred at room temperature overnight, $Na_2S_2O_3$ aq was added and the aqueous layer was extracted with EtOAc ($10 \text{ mL} \times 2$). The combined organic layers were washed with 1 N HCl aq, NaHCO₃ aq, water and brine. After dried over MgSO₄, the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (0-60% EtOAc/hexane) to obtain 43a as a white amorphous (13.3 mg, 46%). Method B (Scheme 1-17): To a solution of sulfone **50** (1.24 g, 3.37 mmol) in THF/H₂O (v/v = 1/1, 25 mL) was added 1 N NaOH aq (6.74 mL, 6.74 mmol) at 0 °C. After stirred at 0 °C for 1 hour, NaOAc (1.11 g, 13.5 mmol) and (aminooxy)sulfonic acid (1.22 g, 10.8 mmol) were added and the mixture was stirred at room temerature for 6 hours. After the organic solvent was removed under reduced pressure, the aqueous layer was extracted with EtOAc ($20 \text{ mL} \times 2$) and the combined organic layers were dried over MgSO₄. After the solvent was removed in vacuo, the crude product was purified by flash column chromatography (0-60% EtOAc/hexane) to obtain 43a as a white amorphous (0.90 g, 86%). ¹H NMR (400 MHz, CDCl₃) δ : 7.39–7.38 (5H, m), 5.00 (1H, d, J = 11.5 Hz), 4.96 (2H, s), 4.87 (1H, d, J = 11.5 Hz), 4.39 (1H, t, J = 8.2 Hz), 3.55 (1H, d, J = 12.0 Hz), 3.45-3.44 (1H, m), 3.07 (1H, d, J = 11.8 Hz), 2.32-2.07 (3H, m), 1.84-1.77 (1H, m). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, CDCl₃) δ: 167.7, 135.3, 129.3, 129.0, 128.7, 78.3, 74.0, 57.9, 43.3, 18.2, 17.1. HRMS (ESI) m/z: $[M + H]^+$ Calcd for C₁₃H₁₈N₃O₄S 312.1013; Found 312.1010.

Sodium (2*R*,5*R*)-7-oxo-2-sulfamoyl-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (51). To a solution of **43a** (168 mg, 0.54 mmol) in MeOH (6.7 mL) was added 5% Pd/C (115 mg, 0.68 wt equiv). After stirred at room temperature under H₂ atmosphere (1 atm) for 1 hour, the mixture was filtered. The solvent was removed *in vacuo* and the crude product was used without any purification. The crude product was dissolved to pyridine (6 mL) and SO₃-pyridine (514 mg, 3.23 mmol) was added. After stirred for 3.5 hours, 8.4% NaHCO₃ aq (20 mL) was added at 0 °C and the aqueous layer was washed with CH₂Cl₂ (20 mL × 3) and the solvent was removed under reduced pressure. The crude product was applied onto the HP20SS resin and subjected to ODS column chromatography (H₂O only) to afford **51** (133 mg, 77%) as a white amorphous after lyophilization. ¹H NMR (400 MHz, D₂O) δ : 4.60 (1H, t, *J* = 8.1 Hz), 4.32–4.29 (1H, br m), 3.72 (1H, d, *J* = 12.3 Hz), 3.41 (1H, dd, *J* = 12.0, 2.1 Hz), 2.30–2.24 (2H, m), 2.10–2.04 (2H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 168.7, 74.2, 59.6, 55.4, 43.4, 17.7. HPLC: 94.4% (method-C). Anal. Calcd for C₆H₁₀N₃O₇S₂Na(H₂O)_{2.0}(NaHCO₃)_{0.3}: C, 19.68; H, 3.75; N, 10.93; S, 16.68; Na, 7.77. Found: C, 19.52; H, 3.75; N, 11.10; S, 16.89; Na, 7.72.

tert-Butyl [[(2R,5R)-6-(*benzyloxy*)-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-2-*yl*]*sulfonyl*]*carbamate* (53). To a solution of 43a (2.58 g, 8.27 mmol) in CH₂Cl₂ (13 mL) were added DMAP (1.21 g, 9.93 mmol) and Boc₂O (2.11 mL, 9.10 mmol) at 0 °C. After being stirred overnight at room temperature, the mixture was diluted with EtOAc. The organic layer was washed with 10% aq citric acid, 8.4% aq Na-HCO₃, water, and brine, before being dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flush column chromatography (0–65%, EtOAc/hexane) to give 53 (3.14 g, 92%) as a white sticky foam. ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.36 (5H, m), 6.96 (1H, brs), 5.01 (1H, d, *J* = 11.4 Hz), 4.93 (1H, t, *J* = 8.4 Hz), 4.85 (1H, d, *J* = 11.4 Hz), 3.48 (1H, d, *J* = 12.2 Hz), 3.41–3.39 (1H, m), 3.09–3.05 (1H, m), 2.33–2.07 (3H, m), 1.85–1.78 (1H, m), 1.54 (9H, s). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 167.0, 149.1, 135.4, 129.3, 128.9, 128.6, 85.0, 78.3, 71.5, 57.8, 43.3, 27.9, 18.3, 16.6. HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₈H₂₆N₃O₆S 412.1537; found 412.1533.

tert-Butyl [[(2R,5R)-6-(*benzyloxy*)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]sulfonyl](methyl) carbamate (54). To a solution of 53 (400 mg, 0.97 mmol) in THF (8 mL) were added MeOH (59 μL, 1.46

mmol), PPh₃ (433 mg, 1.65 mmol) and di-2-methoxyethyl azodicarboxylate (DMEAD) (387 mg, 1.65 mmol) at 0 °C. After being stirred for 1 h at room temperature, the solvent was removed under reduced pressure. The crude was purified by flush column chromatography (0–50%, EtOAc/hexane) to give **54** (412 g, quant.) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.36 (5H, m), 5.13 (1H, t, *J* = 8.2 Hz), 5.00 (1H, d, *J* = 11.5 Hz), 4.85 (1H, d, *J* = 11.5 Hz), 3.50 (1H, d, *J* = 12.0 Hz), 3.41–3.39 (1H, m), 3.24 (3H, s), 3.04 (1H, dt, *J* = 12.0, 1.5 Hz), 2.35–2.24 (1H, m), 2.21–2.03 (2H, m), 1.86–1.77 (1H, m), 1.56 (9H, s). MS-ESI (*m*/*z*): 426 [M + H]⁺.

(2*R*,5*R*)-6-(Benzyloxy)-N-methyl-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-sulfonamide (55). To a solution of **54** (202 mg, 0.474 mmol) in CH₂Cl₂ (4 mL) was added 2 M AlCl₃ in MeNO₂ (0.47 mL, 0.949 mmol) at -30 °C. After being stirred for 1 h at -30 °C, 1 N aq HCl was added, and the mixture was extracted with EtOAc. The organic layer was washed with aq NaHCO₃ before being dried over Na₂SO₄. The solvent was removed to give **55** (148 mg, 96%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.40–7.37 (5H, m), 4.99 (1H, d, *J* = 11.4 Hz), 4.87 (1H, d, *J* = 11.4 Hz), 4.51 (1H, q, *J* = 5.1 Hz), 4.41 (1H, t, *J* = 8.0 Hz), 3.55 (1H, d, *J* = 11.9 Hz), 3.47–3.46 (1H, m), 3.05–3.03 (1H, m), 2.89 (3H, d, *J* = 5.3 Hz), 2.33–2.22 (1H, m), 2.17–2.04 (2H, m), 1.83–1.80 (1H, m). MS-ESI (*m*/*z*): 326 [M + H]⁺.

Sodium (2R,5R)-2-(N-methylsulfamoyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (56). To a solution of 55 (148 mg, 0.455 mmol) in MeOH (3 mL) was added 5% Pd/C (97 mg, 0.65 wt equiv). After being stirred under a H_2 atmosphere (1 atm) for 40 min, the mixture was filtered, and the solvent was removed to give the debenzylated product, which was used without further purification. To a solution of the crude product in pyridine (3 mL) was added SO₃-pyridine (181 mg, 1.14 mmol). After being stirred overnight, the mixture was poured into aq NaHCO₃ and the aqueous layer was washed with CH₂Cl₂ twice. To the aqueous layer were added CH₂Cl₂ (20 mL) and tetrabutylammonium hydrogen sulfate (176 mg, 0.519 mmol) at 0 °C. After being stirred for 15 min at room temperature, the aqueous layer was extracted with CH_2Cl_2 (20 mL \times 3), and the solvent was removed under reduced pressure. The crude product was applied onto a Dowex sodium form column (Dowex 50WX8 hydrogen form treated with 1 N aq NaOH and washed until neutral pH with H₂O) and subjected to ODS column chromatography (H₂O only). The fractions containing the desired compound were combined, frozen and lyophilized to afford 56 (115 mg, 75%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 4.75–4.71 (1H, m), 4.32–4.29 (1H, br m), 3.71 (1H, d, *J* = 12.3 Hz), 3.40 (1H, d, *J* = 12.0 Hz), 2.82 (3H, s), 2.34– 2.13 (2H, m), 2.09–2.04 (2H, m). HPLC 89.5% (method-C). Anal. calcd for C₇H₁₂N₃O₇S₂Na(H₂O)_{1.0}: C, 23.66; H, 3.97; N, 11.83; S, 18.05; Na, 6.47. found: C, 23.58; H, 4.04; N, 11.48; S, 18.21; Na, 6.79.

(2*R*,5*R*)-6-(*Benzyloxy*)-*N*,*N*-dimethyl-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-sulfonamide (57). To a solution of 55 (142 mg, 0.435 mmol) in THF (2.8 mL) were added MeOH (27 μL, 0.653 mmol), PPh₃ (194 mg, 0.740 mmol) and diisopropyl azodicarboxylate (DIAD) (144 μL, 0.740 mmol) at 0 °C. After being stirred for 30 min at room temperature, the solvent was removed. The crude was purified by flush column chromatography (0–70%, 25% EtOAc in CH₂Cl₂ / hexane) to give 57 (129 mg, 87%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.42–7.36 (5H, m), 4.99 (1H, d, *J* = 11.4 Hz), 4.87 (1H, d, *J* = 11.5 Hz), 4.51 (1H, t, *J* = 7.6 Hz), 3.60 (1H, d, *J* = 11.9 Hz), 3.45–3.43 (1H, m), 3.00–2.99 (7H, m), 2.31–2.21 (1H, m), 2.15–2.04 (2H, m), 1.85–1.76 (1H, m). MS-ESI (*m*/*z*): 340 [M + H]⁺.

Sodium (2R,5R)-2-(N,N-dimethylsulfamoyl)-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (58). To a solution of **57** (255 mg, 0.750 mmol) in MeOH/THF (v/v = 4/1, 12.5 mL) was added 5% Pd/C (160 mg, 0.63 wt equiv). After being stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product, which was used without further purification. To a solution of the crude debenzylated product in pyridine (9.3 mL) was added SO₃-pyridine (716 mg, 4.50 mmol). After being stirred overnight, the mixture was poured into aq NaHCO₃, and the aqueous layer was washed with CH₂Cl₂ twice. The aqueous solvent was removed under reduced pressure, and the crude was applied onto the HP20SS resin and subjected to ODS column chromatography (0–7%, MeCN/H₂O) to give **58** (156 mg, 59%) as a white amorphous solid after lyophilization. ¹H NMR (400 MHz, D₂O) δ : 4.85 (1H, t, *J* = 8.2 Hz), 4.31–4.28 (1H, br m), 3.72 (1H, d, *J* = 12.4 Hz), 3.40 (1H, d, *J* = 12.6 Hz), 3.01 (6H, s), 2.35–2.25 (1H, m), 2.21–2.11 (1H, m), 2.08–2.04 (2H, m). HPLC: 98.9%. MS-ESI (*m/z*): 328 [M - H]⁻.

tert-Butyl (2-amino-2-oxoethyl)[[(2R,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl] sulfonyl]carbamate (59). To a solution of 53 (483 mg, 1.17 mmol) in DMF (4.8 mL) were added 2-iodoacetamide (651 mg, 3.52 mmol) and K₂CO₃ (389 mg, 2.82 mmol). After being stirred overnight, the mixture was poured into water, and the aqueous layer was extracted with EtOAc. The organic layer was washed with water and brine before being dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flush column chromatography (30–80%, EtOAc/hexane) to give 59 (460 mg, 84%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.40–7.38 (5H, br m), 7.33 (1H, br s), 5.39–5.35 (2H, m), 5.02 (1H, d, *J* = 11.4 Hz), 4.85 (1H, d, *J* = 11.3 Hz), 4.48 (1H,

d, *J* = 17.4 Hz), 4.11 (1H, d, *J* = 17.4 Hz), 3.49 (1H, d, *J* = 12.2 Hz), 3.45 (1H, dd, *J* = 6.0, 3.1 Hz), 3.06 (1H, d, *J* = 11.5 Hz), 2.39–2.22 (2H, m), 2.17–2.08 (1H, m), 1.89–1.83 (1H, m), 1.55 (9H, s). MS-ESI (*m*/*z*): 469 [M + H]⁺.

2-[[(2R,5R)-6-(Benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octane]-2-sulfonamido]acetamide (60). To a solution of **59** (220 mg, 0.47 mmol) in CH₂Cl₂ (1.1 mL) was added TFA (1.1 mL) at 0 °C. After being stirred for 2 h at room temperature, the mixture was poured into water, and the aqueous layer was extracted with EtOAc. The organic layer was washed with water and brine before being dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flush column chromatography (0–8%, MeOH/EtOAc) to give **60** (150 mg, 87%). ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.37 (5H, m), 6.81 (1H, br s), 5.75 (1H, br s), 5.36 (1H, t, *J* = 6.1 Hz), 4.99 (1H, d, *J* = 11.3 Hz), 4.86 (1H, d, *J* = 11.4 Hz), 4.41 (1H, t, *J* = 8.1 Hz), 3.93 (2H, d, *J* = 6.3 Hz), 3.53 (1H, d, *J* = 12.0 Hz), 3.46–3.44 (1H, m), 3.08–3.05 (1H, m), 2.32–2.03 (3H, m), 1.85–1.77 (1H, m). MS-ESI (*m*/*z*): 369 [M + H]⁺.

Sodium (2*R*,5*R*)-2-[*N*-(2-amino-2-oxoethyl)sulfamoyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl sulfate (61). To a solution of 60 (150 mg, 0.407 mmol) in MeOH (2.3 mL) was added 5% Pd/C (435 mg, 2.9 wt equiv). After stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product, which was used without further purification. To a solution of the crude debenzylated product in pyridine (5.7 mL) was added SO₃-pyridine (388 mg, 2.44 mmol). After being stirred overnight, the mixture was poured into aq NaHCO₃, and the aqueous layer was washed with CH₂Cl₂ twice. The aqueous solvent was removed under reduced pressure, and the crude was applied onto the HP20SS resin and subjected to ODS column chromatography (H₂O only) to give **61** (103 mg, 67%) as a white amorphous solid after lyophilization. ¹H NMR (400 MHz, D₂O) δ : 4.70 (1H, t, *J* = 8.1 Hz), 4.31–4.29 (1H, br m), 3.92 (2H, s), 3.71 (1H, d, *J* = 12.4 Hz), 3.42–3.39 (1H, m), 2.35–2.17 (2H, m), 2.08–2.05 (2H, m). HPLC: 92.9% (method-C). MS-ESI (*m*/z): 357 [M - H]⁻.

tert-Butyl [[(2*R*,5*R*)-6-(*benzyloxy*)-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-2-*yl*]*sulfonyl*](2,4-*dimeth-oxybenzyl*)*carbamate* (62). To a solution of 53 (8.09 g, 19.7 mmol) in THF (162 mL) were added (2,4-dimethoxyphenyl)methanol (4.96 g, 29.5 mmol), PPh₃ (8.77 g, 33.4 mmol), and di-2-methoxyethyl azodicarboxylate (DMEAD) (7.83 g, 33.4 mmol) at 0 °C. After the mixture was stirred for 2 h at room temperature, the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (0–50%, EtOAc/hexane) to give 62 (9.77 g, 89%) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ : 7.39–7.36 (5H, m), 7.21 (1H, d, *J* = 8.3 Hz), 6.43 (1H, dd, *J* = 8.2, 2.1 Hz), 6.39 (1H, d, *J* = 2.0 Hz), 5.17 (1H, t, *J* = 8.1 Hz), 4.98 (1H, d, *J* = 11.4 Hz), 4.87–4.78 (3H, m), 3.78 (3H, s), 3.77 (3H, s), 3.35–3.32 (2H, m), 2.77 (1H, d, *J* = 11.9 Hz), 2.28–2.02 (3H, m), 1.80–1.72 (1H, m), 1.51 (9H, s).

Ethyl 2-[[(2R,5R)-2-[N-(*tert-butoxycarbonyl*)-N-(2,4-*dimethoxybenzyl*)*sulfamoyl*]-7-*oxo-1,6-<i>diazabicyclo*[3.2.1]*octan-6-yl*]*oxy*]-2,2-*difluoroacetate* (63). To a solution of 62 (2.00 g, 3.56 mmol) in THF/MeOH (v/v = 1/3, 80 mL) was added 5% Pd/C (0.76 g, 0.38 wt equiv). After being stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product. To a solution of the crude debenzylated product in DMF (34 mL) were added ethyl 2-bromo-2,2-difluoroacetate **22b** (1.37 mL, 10.7 mmol) and K₂CO₃ (1.18 g, 8.54 mmol). After being stirred overnight for 3 h, the mixture was poured into water, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (20–40%, EtOAc/hexane) to give **63** (1.58 g, 75%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.20 (1H, d, *J* = 8.4 Hz), 6.43 (1H, dd, *J* = 8.4, 2.3 Hz), 6.39 (1H, d, *J* = 2.3 Hz), 5.27 (1H, t, *J* = 8.3 Hz), 4.90 (1H, d, *J* = 16.2 Hz), 4.77 (1H, d, *J* = 16.3 Hz), 4.43–4.35 (2H, m), 3.97–3.95 (1H, m), 3.79 (3H, s), 3.78 (3H, s), 3.49 (1H, d, *J* = 12.5 Hz), 2.94 (1H, d, *J* = 12.5 Hz), 2.35–2.07 (3H, m), 2.01–1.94 (1H, m), 1.51 (9H, s), 1.39 (3H, t, *J* = 7.2 Hz). MS-ESI (*m*/z): 594 [M + H]⁺.

Ethyl 2,2-*difluoro*-2-[[(2R,5R)-7-*oxo*-2-*sulfamoyl*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*]*oxy*]*acetate* (64). To a solution of 63 (1.58 g, 2.66 mmol) in CH₂Cl₂ (32 mL) were added anisole (1.74 mL, 16.0

mmol) and 2 M solution of AlCl₃ in MeNO₂ (8.0 mL, 16.0 mmol) at -30 °C. After being stirred for 1 h at 0 °C, the mixture was poured into water, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with aq NaHCO₃, water, and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–60%, EtOAc/hexane) to give **64** (835 mg, 91%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 4.78 (2H, s), 4.47 (1H, t, *J* = 8.5 Hz), 4.43–4.38 (2H, m), 4.10–4.08 (1H, m), 3.75 (1H, d, *J* = 12.4 Hz), 3.34 (1H, d, *J* = 12.6 Hz), 2.40–2.00 (4H, m), 1.39 (3H, t, *J* = 7.2 Hz).

Sodium 2,2-difluoro-2-(((2R,5R)-7-oxo-2-sulfamoyl-1,6-diazabicyclo[3.2.1]octan-6-yl)oxy)acetate (65). To a solution of 64 (819 mg, 2.39 mmol) in THF/H₂O (v/v = 2/1, 24 mL) was added 1 N aq NaOH (2.39 mL, 2.39 mmol) at 0 °C. After the mixture was stirred for 1 h at 0 °C, the aqueous layer was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give 65 (706 mg, 88%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 4.65 (1H, t, *J* = 8.3 Hz), 4.25–4.22 (1H, br m), 3.71 (1H, d, *J* = 12.4 Hz), 3.40 (1H, dt, *J* = 12.4, 1.4 Hz), 2.33–2.24 (2H, m), 2.16–2.02 (2H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 172.7, 166.2 (t, ³*J*_{C-F} = 31.9 Hz), 120.0 (t, ²*J*_{C-F} = 280.6 Hz), 77.5, 64.0, 46.0, 20.7, 20.5. ¹⁹F NMR (377 MHz, D₂O) δ : -83.1 (d, ³*J*_{F-F} = 136.2 Hz), -83.8 (d, ³*J*_{F-F} = 134.9 Hz). HPLC: >99.9% (method-A). Anal. calcd for C₈H₁₀F₂N₃O₆SNa(H₂O)_{1.3}: C, 26.64; H, 3.52; F, 10.54; N, 11.65; S, 8.89; Na, 6.37. found: C, 26.92; H, 3.27; F, 10.28; N, 11.88; S, 8.90; Na, 6.63.

Ethyl (2*R*)-2-[[(2*R*,5*R*)-2-[*N*-(*tert-butoxycarbonyl*)-*N*-(2,4-*dimethoxybenzyl*)*sulfamoyl*]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (66). To a solution of 61 (9.77 g, 17.4 mmol) in MeOH (244 mL) was added 5% Pd/C (3.70 g, 0.38 wt equiv). After being stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product. To a solution of the crude debenzylated product in DMF (41 mL) were added **22d** (5.76 g, 19.1 mmol) and K₂CO₃ (2.65 g, 19.1 mmol) at -20 °C. After being stirred overnight at -20 °C, the mixture was poured into water, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (20–50%, EtOAc/hexane) to give **66** (5.54 g, 55%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.19 (1H, d, *J* = 8.3 Hz), 6.42 (1H, dd, *J* = 8.3, 2.3 Hz), 6.38 (1H, d, *J* = 2.0 Hz), 5.82 (1H, d, ³*J*_{H-F} = 52.8 Hz), 5.23 (1H, t, *J* = 8.3 Hz), 4.89 (1H, d, *J* = 16.2 Hz), 4.77 (1H, d, *J* = 16.2 Hz), 4.38–4.27 (2H, m), 3.99–3.98 (1H, m), 3.79 (3H, s), 3.77 (3H, s), 3.44 (1H, d, *J* = 12.4 Hz), 2.86 (1H, d, *J* = 12.4 Hz), 2.33–2.07 (3H, m), 1.97–1.91 (1H, m), 1.52 (9H, s), 1.35 (3H, t, *J* = 7.2 Hz). MS-ESI (*m*/*z*): 576 [M + H]⁺.

Ethyl (2*R*)-2-*fluoro*-2-*[[*(2*R*,5*R*)-7-*oxo*-2-*sulfamoyl*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*]*oxy*]*acetate* (67). To a solution of 66 (164 mg, 0.284 mmol) in CH₂Cl₂ (3 mL) were added anisole (186 μ L, 1.7 mmol) and 2 M solution of AlCl₃ in MeNO₂ (852 μ L, 1.70 mmol) at -30 °C. After being stirred for 1 h at 0 °C, the mixture was poured into aq HCl, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with aq NaHCO₃, water, and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–60%, EtOAc/hexane) to give 67 (63.2 mg, 68%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 5.85 (1H, d, *J* = 52.3 Hz), 4.75 (2H, br s), 4.44 (1H, t, *J* = 8.5 Hz), 4.36–4.28 (2H, m), 4.10 (1H, dd, *J* = 6.2, 3.2 Hz), 3.70 (1H, d, *J* = 12.4 Hz), 3.24 (1H, d, *J* = 12.1 Hz), 2.38–2.13 (3H, m), 2.05–1.97 (1H, m), 1.33 (3H, t, *J* = 7.1 Hz).

Sodium (2*R*)-2-fluoro-2-[[(2*R*,5*R*)-7-oxo-2-sulfamoyl-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate (68). To a solution of 67 (150 mg, 0.461 mmol) in THF/H₂O (v/v = 2/1, 4.5 mL) was added 1 N aq NaOH (461 µL, 0.461 mmol) at 0 °C. After the mixture was stirred for 5 min at 0 °C, the aqueous layer was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give 68 (121 mg, 82%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.80 (1H, d, ³*J*_{H-F} = 58.5 Hz), 4.60 (1H, t, *J* = 8.2 Hz), 4.25 (1H, t, *J* = 3.8 Hz), 3.67 (1H, d, *J* = 12.3 Hz), 3.33 (1H, dt, *J* = 12.3, 1.5 Hz), 2.34–2.19 (2H, m), 2.17–2.01 (2H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 172.1, 171.9 (d, ³*J*_{C-F} = 27.1 Hz), 110.6 (d, ²*J*_{C-F} = 240.6 Hz), 77.2, 63.1, 46.2, 20.6, 20.5. ¹⁹F NMR (377 MHz, D₂O) δ : -130.1 (d, ³*J*_{H-F} = 58.6 Hz). HPLC: >99.9% (method-A). Anal. calcd for C₈H₁₁FN₃O₆SNa(H₂O)_{1.0}: C, 28.49; H, 3.89; F, 5.63; N, 12.46; S, 9.51; Na, 6.82. found: C, 28.58; H, 4.12; F, 5.69; N, 12.52; S, 9.53; Na, 6.41.

第6節

Large-scale Synthesis of 23. To a solution of carboxylic acid **1** (600 g, 2.17 mol) in CH₂Cl₂ (3.0 L) were added 2-mercaptopyridine 1-oxide **4** (290 mg, 2.28 mol) and EDC·HCl (437 g, 2.28 mol) maintaining the inner temperature 10-20 °C, with CH₂Cl₂ (600 mL) for rinsing apparatuses. The reaction mixture was stirred at room temperature for 1.5 hours in the dark (solution A). A solution of PhSSMe **5b** (1.20 kg, 6.52 mol) in CH₂Cl₂ (1.2 L) was cooled to 0 °C under white light irradiation using eight

LED lamps (A 160WE Tuna Blue, Kessil[®]). The solution A was added over 1 hour by a liquid feeding pump, with a CH₂Cl₂ (600 mL) linewash while maintaining the inner temperature under 10 °C. After stirred at 0 °C for 1.5 hours, CO₂ gas evolution stopped and the reaction mixture was poured into water (10 L). The organic phase was separated and the aqueous layer was extracted with CH₂Cl₂ (300 mL). After dried over MgSO₄ (400 g), the solvent was removed under reduced pressure to afford 1.86 kg of the crude product. To a slurry of silica-gel (1.0 kg) in EtOAc/hexane (v/v = 1/2, 3.0 L) was slowly added a hexane (2.0 L) solution of the crude product while keeping the inner temperature under 10 °C. After stirred for 15 minutes, the mixture was filtered and the silica-gel was washed with EtOAc/hexane (v/v = 1/2, 3.0 L× 3). The solvent was removed under reduced pressure to afford a roughly purified sulfide 2b (1.57 kg) containing PhSSMe 5b. To a solution of the roughly purified sulfide 2b (1.57 kg) in CH₂Cl₂ (2.4 L) was slowly added a solution of 72 wt% *m*-CPBA (448 g, 1.87 mol) in CH₂Cl₂ (4.8 L) over 1.5 hours while maintaining the inner temperature under -55 °C. After stirred for 15 minutes, the inner temperature was raised to -30 °C and the reaction mixture was poured into a stirring aqueous solution (4.3 L) of NaHCO₃ (225 g) and Na₂S₂O₃ \cdot 5H₂O (350 g). After the organic layer was separated, NaCl (675 g) was added and the aqueous phase extracted with EtOAc (4.5 L \times 2). The combined organic layers were dried over MgSO₄ (750 g) and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (0-10% MeOH/EtOAc) using 3.0 kg of silicagel. To the purified product (553 g) was added EtOAc (97 mL) and the slurry was stirred at -30 °C for 20 minutes before filtering, washing with EtOAc (480 mL \times 2) and diisopropyl ether (480 mL \times 2), and drying to afford 23 (219 g, 34%, dr = 31/1) as a white crystalline solid.

Figure S1. Reaction set up for the large-scale synthesis of 23.

COSY and NOESY spectra of 2a, 42, 43a and 43b

COSY and NOESY of **2a** COSY-1 (500 MHz, CDCl₃)

NOESY-1 (500 MHz, CDCl₃)

COSY and NOESY of **42** COSY (500 MHz, CDCl₃)

COSY and NOESY of **43a** COSY (500 MHz, CDCl₃)

COSY and NOESY of **43b** COSY (500 MHz, CDCl₃)

NOESY (500 MHz, CDCl₃)

X-ray crystallographic data of compound 23

X-ray crystallography:

The diffraction data of **23** were collected on an XtaLAB AFC10 (RCD3): quarter-chi single diffractometer. The crystal was kept at 100.0 K during data collection. Using Olex2,¹⁰ the structure was solved with the ShelXT¹¹ structure solution program using Intrinsic Phasing and refined with the ShelXL¹² refinement package using Least Squares minimisation.

Sample preparation:

X-ray quality crystal was prepared by vapor diffusion method using EtOAc/hexane at room temperature.

Figure S2. X-ray Structure of compound 23. Thermal ellipsoids are set at 30% probability.

Table S1. Crystal data for 23

Formula	$C_{14}H_{18}N_2O_3S$
Formula weight	294.36
Temperature (K)	100
Crystal system	monoclinic
Space group	C2
a (Å)	20.2904 (10)
b (Å)	6.2175 (3)
c (Å)	11.6198 (5)
α (°)	90
β (°)	101.089 (4)
γ (°)	90
Volume (Å ³)	1438.53 (12)
Z	4
ρ (g/cm ³)	1.359
μ (mm ⁻¹)	2.085
F(000)	624.0
Crystal size (mm ³)	0.18 imes 0.15 imes 0.1
R ₁	0.0441
Flack parameter	0.01(3)
CCDC Deposition Number	1993055

第3章の合成

Benzhydryl (2*R*)-2-*fluoro*-2-*[[*(2*R*,5*R*)-2-*[*(*S*)-*methylsulfinyl*]-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*]*oxy*]*acetate* (122). Compound 122 was isolated by preparative supercritical fluid chromatography (SFC) using CHIRALPAK IC/SFC (flow rate: 30 mL/min, mobile phase: ^{*i*}PrOH 38%, back pressure: 8 MPa). ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.28 (10H, m), 6.97 (1H, s), 5.98 (1H, d, ³J_{H-F} = 53.5 Hz), 3.98–3.95 (1H, br m), 3.81 (1H, t, *J* = 8.0 Hz), 3.62 (1H, d, *J* = 12.0 Hz), 2.75 (1H, d, *J* = 12.0 Hz), 2.69 (3H, s), 2.52–2.41 (1H, m), 2.23–2.09 (2H, m), 2.04–1.94 (1H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 168.9, 162.2 (d, ³J_{C-F} = 35.2 Hz), 138.6, 138.6, 128.7, 128.5, 128.5, 128.4, 127.7, 127.1, 105.4 (d, ²J_C- $_F = 238.4$ Hz), 79.6, 72.4, 61.5, 44.5, 34.9, 19.1, 18.9. ¹⁹F NMR (377 Hz, CDCl₃) δ : -134.1 (d, ${}^{3}J_{H-F} = 53.1$ Hz). HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₂H₂₄N₂O₅FS 447.1384; found 447.1382.

Sodium (2R)-2-fluoro-2-[[(2R,5R)-2-[(S)-methylsulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6yl]oxyJacetate (117). To a solution of 122 (144 mg, 0.323 mmol) in THF/H₂O (v/v = 2/1, 3 mL) was added 1 N aq NaOH (0.323 mL, 0.323 mmol) at 0 °C. After being stirred for 15 min at 0 °C, the solution was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–15%, MeCN/H₂O) to give 117 (63.4 mg, 64%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.80 (1H, d, ³J_{H-F} = 59.0 Hz), 4.27–4.23 (2H, m), 3.53 (1H, d, J = 12.3 Hz), 3.37 (1H, dd, J = 12.0, 2.5 Hz), 2.75 (3H, s), 2.22–2.12 (3H, m), 2.07–1.98 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 173.0, 172.0 (d, ³J_{C-F} = 27.1 Hz), 110.7 (d, ²J_{C-F} = 240.6 Hz), 77.7, 63.1, 47.4, 36.3, 21.3, 21.2. ¹⁹F NMR (377 MHz, D₂O) δ : –130.1 (d, ³J_{H-F} = 58.6 Hz). HPLC: >99.9% (method-A). Anal. calcd for C₉H₁₂FN₂O₅SNa(H₂O)_{2.1}: C, 31.79; H, 4.80; F, 5.59; N, 8.24; S, 9.43; Na, 6.76. found: C, 32.03; H, 4.86; F, 5.53; N, 8.51; S, 8.84; Na, 6.27.

S-(*Fluoromethyl*) 4-methylbenzenesulfonothioate (73).¹³ To a degassed solution of fluoromethyl 4methylbenzenesulfonate (5.00 g, 24.5 mmol) in DMF (30 mL) was added potassium 4-methylbenzenesulfonothioate (6.65 g, 29.4 mmol). After being stirred overnight at 70 °C in the dark, the mixture was poured into water, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (0–20% EtOAc/hexane) to give 4.83 g of 42 wt % 73 in a mixture with fluoromethyl 4-methyl-benzenesul- fonate (net. 2.02 g, 38%). ¹H NMR (400 MHz, CDCl₃) δ : 7.83 (2H, d, *J* = 8.3 Hz), 7.36 (2H, d, *J* = 8.3 Hz), 6.01 (2H, d, ³*J*_{H-F} = 50.8 Hz), 2.46 (3H, s). Note: Compound 73 might be light and air sensitive.

tert-Butyl (2S,5R)-6-(*benzyloxy*)-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylate (106). To a solution of **1** (25.0 g, 90.0 mmol) in CH₂Cl₂ (250 mL) were added *tert*-butanol (86.0 mL, 905 mmol), pyridine (14.6 mL, 181 mmol), DMAP (1.1 g, 9.1 mmol), and EDC·HCl (20.8 g, 109 mmol) at 0 °C. After being stirred for 2 h, at room temperature, the mixture was washed with 1N aq HCl, water, aq NaHCO₃, and brine. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (0–30% EtOAc/hexane) to give **106** (19.9 g, 66%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.42 (2H, d, *J* = 6.3 Hz), 7.39–7.32 (3H, m), 5.05 (1H, d, *J* = 11.4 Hz), 4.90 (1H, d, *J* = 11.4 Hz), 4.01–3.99 (1H, br m), 3.31–3.29 (1H, br m), 3.04 (1H, d, *J* = 12.1 Hz), 2.98 (1H, d, *J* = 11.6 Hz), 2.09–2.02 (3H, m), 1.71–1.62 (1H, m), 1.48 (9H, s). MS-ESI (*m*/*z*): 333 [M + H]⁺.

tert-Butyl (2S,5R)-6-hydroxy-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylate (123). To a solution of 106 (52.7 g, 159 mmol) were added DABCO (0.36 g, 3.17 mmol) and 10 wt % Pd(OH)₂ on carbon (11.1 g, 21.2 wt equiv). After being stirred under a H₂ atmosphere (1 atm) for 2 h, the mixture was filtered, and the solvent was removed under reduced pressure. The crude was triturated with diisopropyl ether to give 123 (14.4 g, 37%) as a white solid.

tert-Butyl (2*S*,5*R*)-6-[(*R*)-2-ethoxy-1-fluoro-2-oxoethoxy]-7-oxo-1,6-diazabicyclo[3.2.1]octane-2carboxylate (108). To a solution of 123 (21.8 g, 90.0 mmol) in DMF (196 mL) were added 22d (20.0 g, 108 mmol) and K₂CO₃ (17.4 g, 126 mmol) at -40 °C. After being stirred for 2 days at -30 °C, the mixture was poured into iced water, and the aqueous layer was extracted with EtOAc. The organic layer was washed with water and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (20–30% EtOAc/hexane) to give 108 (17.3 g, 56%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 5.89 (1H, d, ³*J*_{H-F} = 52.5 Hz), 4.35–4.26 (2H, m), 4.08 (1H, d, *J* = 6.3 Hz), 3.97–3.95 (1H, br m), 3.20 (1H, d, *J* = 12.1 Hz), 3.13 (1H, d, *J* = 11.9 Hz), 2.19–2.04 (3H, m), 1.89–1.81 (1H, m), 1.50 (9H, s), 1.33 (3H, t, *J* = 7.2 Hz). MS-
ESI (m/z): 347 $[M + H]^+$.

(2S,5R)-6-[(R)-2-Ethoxy-1-fluoro-2-oxoethoxy]-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylic acid (70). To a solution of 108 (17.3 g, 49.9 mmol) in MeNO₂ (86 mL) was added 2 M solution of TiCl₄ in CH₂Cl₂ (49.9 mL, 100 mmol) at -30 °C. After being stirred for 20 min at -30 °C, the mixture was poured into iced water, and the aqueous layer was extracted with EtOAc. The organic layer was washed with water and brine before being dried over MgSO₄. The solvent was removed under reduced pressure to give 70 (12.9 g, 89%). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 6.29 (1H, d, ³*J*_{H-F} = 55.1 Hz), 4.30–4.17 (2H, m), 3.98–3.95 (2H, m), 3.07–3.00 (2H, m), 2.04–1.77 (4H, m), 1.22 (3H, t, *J* = 7.1 Hz).

Ethyl (2*R*)-2-*fluoro*-2-*[[(2R,5R)*-2-*[(fluoromethyl)thio]*-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl] oxyJacetate (71a). To a solution of **70** (1.13 g, 3.89 mmol) in CH₂Cl₂ (12 mL) were added 2-mercaptopyridine 1-oxide **4** (0.52 g, 4.09 mmol) and EDC·HCl (0.78 g, 4.09 mmol). The solution was stirred for 1.5 h at room temperature in the dark. Thiosulfonate **73** (2.57 g, 11.7 mmol) was added, and the mixture was stirred under white light irradiation using two LED lamps for 40 min at 0 °C. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography to give **71a** (1.02 g, 57 wt % purity). ¹H NMR (400 MHz, CDCl₃) δ : 5.89 (1H, d, ³*J*_{*H*-*F*} = 52.5 Hz), 5.65 (1H, dd, *J* = 114.4, 10.4 Hz), 5.52 (1H, dd, *J* = 110.0, 10.0 Hz), 4.96 (1H, d, *J* = 7.8 Hz), 4.37–4.28 (2H, m), 4.02–4.01 (1H, br m), 3.78 (1H, d, *J* = 12.0 Hz), 3.04–3.01 (1H, br m), 2.39–2.33 (1H, m), 2.18– 2.12 (1H, m), 1.88–1.80 (1H, m), 1.68 (1H, dd, *J* = 15.7, 7.2 Hz), 1.35 (3H, t, *J* = 7.2 Hz). MS-ESI (*m*/*z*): 311 [M + H]⁺.

Ethyl (2*R*)-2-*fluoro*-2-*[[*(2*R*,5*R*)-2-*[*(*S*)-(*fluoromethyl*)*sulfinyl*]-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*]*oxy*]*acetate* (72*a*). To a solution of 71a (57 wt %, 1.02 g, 1.85 mmol) in CH₂Cl₂ (3 mL) was added 69 wt% *m*-CPBA (486 mg, 1.94 mmol) in CH₂Cl₂ (5 mL) at -78 °C. After being stirred for 3 h at 0 °C, the reaction was quenched by 10% aq Na₂S₂O₃, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with aq NaHCO₃ and dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography to give 72a (333 mg, 26% from 70, dr = >10/1) as a white amorphous solid.

¹H NMR (400 MHz, CDCl₃) δ : 5.87 (1H, d, ³*J*_{*H*-*F*} = 52.3 Hz), 5.55 (1H, dd, *J* = 46.0, 8.8 Hz), 5.33 (1H, dd, *J* = 45.6, 8.8 Hz), 4.55 (1H, t, *J* = 6.3 Hz), 4.36–4.28 (2H, m), 4.10–4.07 (1H, br m), 3.35 (1H, d, *J* = 12.4 Hz), 3.24 (1H, d, *J* = 11.9 Hz), 2.43–2.35 (1H, m), 2.31–2.14 (2H, m), 2.05–1.96 (1H, m), 1.34 (3H, t, *J* = 7.2 Hz). MS-ESI (*m*/*z*): 327 [M + H]⁺.

Sodium (2R)-2-fluoro-2-[[(2R,5R)-2-[(S)-(fluoromethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1] octan-6-yl]oxy]acetate (112). To a solution of 72a (333 mg, 1.02 mmol) in THF/H₂O (v/v = 2/1, 4.5 mL) was added 1 N aq NaOH (1.02 mL, 1.02 mmol) at 0 °C. After being stirred for 10 min at 0 °C, the reaction was quenched by dry ice, and the solution was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give 112 (208 mg, 64%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.82 (1H, d, ³*J*_{H-F} = 58.0 Hz), 5.70 (1H, dd, *J* = 47.9, 9.8 Hz), 5.64 (1H, dd, *J* = 46.6, 9.8 Hz), 4.28–4.26 (1H, br m), 3.45 (1H, d, *J* = 12.3 Hz), 3.34 (1H, d, *J* = 12.3 Hz), 2.37–2.17 (3H, m), 2.10–2.04 (1H, m). ¹³C{¹H} NMR (100

MHz, D₂O) δ : 171.8 (d, ${}^{3}J_{C-F} = 27.1$ Hz), 170.8, 110.7 (d, ${}^{2}J_{C-F} = 241.4$ Hz), 94.6 (d, ${}^{2}J_{C-F} = 220.8$ Hz), 72.6 (d, ${}^{4}J_{C-F} = 8.1$ Hz), 62.4, 48.2, 21.3, 19.5. 19 F NMR (377 MHz, D₂O) δ : -130.2 (d, ${}^{3}J_{H-F} = 58.2$ Hz), -228.4 (t, ${}^{3}J_{H-F} = 47.2$ Hz). HPLC: >99.9% (method-A). Anal. calcd for C₉H₁₁F₂N₂O₅SNa(H₂O)_{1.3}: C, 31.46; H, 3.99; F, 11.06; N, 8.15; S, 9.33; Na, 6.69. found: C, 31.76; H, 4.11; F, 10.88; N, 8.26; S, 8.99; Na, 6.46.

Benzhydryl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-(2-amino-2-oxoethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1] octan-6-yl]oxy]-2-fluoroacetate (86). To a solution of **37** (449 mg, 1.33 mmol) in MeOH/DMF (v/v = 1/1, 10 mL) were added 10% Pd(OH)₂ on carbon (841 mg, 1.87 wt equiv) and DABCO (3.0 mg, 0.03 mmol). After being stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product, which was used without further purification. To a solution of the crude debenzylated product in DMF (5 mL) were added DBU (0.20 mL, 1.33 mmol) and **22e** (473 mg, 1.46 mmol) at 0 °C. After being stirred for 10 min at 0 °C, the mixture was poured into diluted aq HCl, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were washed with water end brine before being dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–20%, MeOH/EtOAc) to give **86** (0.51 g, 78%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) &: 7.41–7.29 (10H, m), 6.95 (1H, s), 6.53 (1H, br s), 5.98 (1H, d, ³J_{H-F} = 53.2 Hz), 5.56 (1H, br s), 4.35 (1H, t, *J* = 6.3 Hz), 4.00–3.97 (1H, br m), 3.80 (1H, d, *J* = 14.1 Hz), 3.53 (1H, d, *J* = 14.1 Hz), 3.09 (1H, d, *J* = 12.3 Hz), 2.67 (1H, d, *J* = 12.0 Hz), 2.35–2.28 (1H, m), 2.24–2.15 (2H, m), 1.97–1.90 (1H, m).

Sodium (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-(2-amino-2-oxoethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (98). To a solution of **86** (0.51 g, 1.04 mmol) in THF/H₂O (v/v = 2/1, 15 mL) was added 1 N aq NaOH (1.04 mL, 1.04 mmol) at 0 °C. After being stirred for 10 min at 0 °C, the reaction was quenched by dry ice, and the organic solvent was removed under reduced pressure. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0-10%, MeCN/H₂O) to give **98** (261 mg, 73%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.82 (1H, d, ³*J*_{H-F} = 58.9 Hz), 4.58 (1H, t, *J* = 6.6 Hz), 4.27–4.25 (1H, br m), 3.42 (1H, d, *J* = 12.4 Hz), 3.33 (1H, d, *J* = 11.6 Hz), 2.41–2.32 (1H, m), 2.26–2.16 (2H, m), 2.09–2.03 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.9 (d, ³*J*_{C-F} = 27.1 Hz), 171.6, 171.0, 110.6 (d, ²*J*_{C-F} = 241.4 Hz), 76.9, 62.5, 48.1, 21.2, 19.1. ¹⁹F NMR (377 MHz, D₂O) δ : -130.2 (d, ³*J*_{H-F} = 58.6 Hz). HPLC: 99.4% (method-A). Anal. calcd for C₁₀H₁₃FN₃O₆SNa(H₂O)_{1.7}: C, 31.95; H, 4.40; F, 5.05; N, 11.18; S, 8.53; Na, 6.12. found: C,

S-(*Cyanomethyl*) *4-methylbenzenesulfonothioate* (74). To a solution of bromoacetonitrile (11.6 mL, 167 mmol) in DMF (200 mL) was added potassium 4-methylbenzenesulfonothioate (40 g, 177 mmol) at 0 °C, and the mixture was stirred for 1 h at room temperature. The mixture was diluted with EtOAc, and the organic layer was washed with water twice before being dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was dissolved to CH₂Cl₂, and diisopropyl ether was added. The solvent was partially removed under reduced pressure, and the white solid was precipitated. The precipitate was filtered to give **74** (29.6 g, 78%) as a white solid. **Note**: Thiosulfonate **74** is unstable on silica gel. ¹H NMR (400 MHz, CDCl₃) δ : 7.87 (2H, d, *J* = 8.4 Hz), 7.41 (2H, d, *J* = 8.2 Hz), 3.87 (2H, s), 2.48 (3H, s). MS-ESI (*m*/*z*): 228 [M + H]⁺.

tert-Butyl (2*S*,5*R*)-6-[(*R*)-1-fluoro-2-methoxy-2-oxoethoxy]-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylate (107). To a solution of 106 (10.5 g, 31.7 mmol) in DMF (105 mL) were added 5 wt % Pd/C (4.72 g, 44.8 wt equiv). After being stirred under a H₂ atmosphere (1 atm) for 2 h, the mixture was filtered, and the solvent was removed under reduced pressure to give 123. To a solution of 123 in DMF (105 mL) were added 22f (6.51 g, 38.1 mmol) and K₂CO₃ (6.14 g, 44.4 mmol) at -40 °C. After being stirred for 8 h at -40 °C, the mixture was poured into iced water, and the aqueous layer was extracted with EtOAc. The organic layer was washed with water and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography (25–35% EtOAc/hexane) to give 107 (5.80 g, 55%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 5.90 (1H, d, ³*J*_{H-F} = 52.5 Hz), 4.09–4.08 (1H, br m), 3.96–3.94 (1H, br m), 3.86 (3H, s), 3.21 (1H, d, *J* = 12.1 Hz), 3.13 (1H, d, *J* = 12.1 Hz), 2.18–2.06 (3H, m), 1.88–1.81 (1H, m), 1.50 (9H, s). (2S,5R)-6-[(R)-1-Fluoro-2-methoxy-2-oxoethoxy]-7-oxo-1,6-diazabicyclo[3.2.1]octane-2-carboxylic acid (69). To a solution of 107 (3.46 g, 10.4 mmol) in MeNO₂ (17 mL) was added 2 M solution of TiCl₄ in CH₂Cl₂ (10.4 mL, 20.8 mmol) at -30 °C. After being stirred for 20 min at -30 °C, the mixture was poured into iced water, and the aqueous layer was extracted with EtOAc. The organic layer was washed with water and brine before being dried over MgSO₄. The solvent was removed under reduced pressure to give **69** (2.25 g, 78%). ¹H NMR (400 MHz, DMSO-*d*₆) δ : 6.30 (1H, d, ³*J*_{H-F} = 55.5 Hz), 3.98–3.96 (2H, m), 3.78 (3H, s), 3.06–3.03 (2H, br m), 2.04–1.76 (4H, m).

Methyl (2*R*)-2-[[(2*R*,5*R*)-2-[(cyanomethyl)thio]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2fluoroacetate (71b). To a solution of **69** (1.00 g, 3.62 mmol) in CH₂Cl₂ (10 mL) were added 2-mercaptopyridine 1-oxide **4** (0.48 g, 3.80 mmol) and EDC·HCl (0.73 g, 3.80 mmol). The solution was stirred for 1 h at room temperature in the dark. Thiosulfonate **74** (2.47 g, 10.9 mmol) was added, and the mixture was stirred under white light irradiation for 40 min at 0 °C. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography to give **71b** (0.44 g, 41%) as a yellow gum. ¹H NMR (400 MHz, CDCl₃) δ : 5.90 (1H, d, ³*J*_{H-F} = 52.5 Hz), 4.87 (1H, dd, *J* = 7.7, 1.9 Hz), 4.03–4.02 (1H, br m), 3.88 (3H, s), 3.78 (1H, d, *J* = 12.1 Hz), 3.50 (1H, d, *J* = 17.2 Hz), 3.28 (1H, d, *J* = 16.9 Hz), 3.10–3.06 (1H, m), 2.38–2.30 (1H, m), 2.18–2.12 (1H, m), 1.87–1.79 (1H, m), 1.66– 1.60 (1H, m). MS-ESI (*m*/*z*): 304 [M + H]⁺.

Methyl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-(*cyanomethyl*)*sulfinyl*]-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6-*yl*] *oxy*]-2-fluoroacetate (72*b*). To a solution of **71b** (295 mg, 0.973 mmol) in CH₂Cl₂ (8 mL) was added 72 wt% *m*-CPBA (233 mg, 0.973 mmol) at -78 °C. After being stirred for 3 h at 0 °C, the reaction was quenched by 10% aq Na₂S₂O₃ and aq NaHCO₃. The aqueous layer was extracted with EtOAc three times, and the combined organic layers were dried over MgSO₄. After the solvent was removed under reduced pressure, the crude product was purified by flash column chromatography to give **72b** (172 mg, 55%, dr = 7/1) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ : 5.89 (1H, d, *J* = 52.1 Hz), 4.42 (1H, t, *J* = 6.9 Hz), 4.12–4.10 (1H, m), 3.98 (1H, d, *J* = 16.1 Hz), 3.88 (3H, s), 3.74 (1H, d, *J* = 16.2 Hz), 3.29–3.26 (1H, m), 3.22 (1H, d, *J* = 12.0 Hz), 2.41–2.24 (3H, m), 2.05–1.98 (1H, m). MS-ESI (*m*/*z*): 320 [M + H]⁺.

Sodium (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-(cyanomethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl] oxy]-2-fluoroacetate (113). To a solution of 72b (171 mg, 0.536 mmol) in THF/H₂O (v/v = 2/1, 3 mL) was added 1 N aq NaOH (0.536 mL, 0.536 mmol) at 0 °C. After being stirred for 15 min at 0 °C, the solution was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give **113** (115 mg, 66%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.82 (1H, d, ³*J*_{H-F} = 58.5 Hz), 4.59 (1H, t, *J* = 6.7 Hz), 4.28–4.26 (1H, br m), 3.44–3.32 (2H, m), 2.43–2.20 (3H, m), 2.11–2.04 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.8 (d, ³*J*_{C-F} = 27.1 Hz), 170.6, 115.3, 110.6 (d, ²*J*_{C-F} = 241.4 Hz), 77.4, 62.4, 48.1, 21.1, 19.5. ¹⁹F NMR (377 MHz, D₂O) δ : -130.2 (d, ³*J*_{H-F} = 58.6 Hz). HPLC: 99.5% (method-A). Anal. calcd for C₁₀H₁₁FN₃O₅SNa(H₂O)_{0.9}: C, 34.97; H, 3.76; F, 5.53; N, 12.23; S, 9.33; Na, 6.69. found: C, 34.96; H, 3.71; F, 5.40; N, 12.32; S, 9.31; Na, 6.60.

S-(*2*-*Hydroxyethyl*) *4-methylbenzenesulfonothioate* (*124*). To a solution of potassium 4-methylbenzenesulfonothioate (10.0 g, 44.2 mmol) in DMF (100 mL) was added 2-bromoethanol (4.05 mL, 57.4 mmol). After being stirred for 3 h at 50 °C, the mixture was poured into water, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and brine before dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (20–60%, EtOAc/hexane) to give **124** (7.38 g, 72%) as a yellow oil. ¹H NMR (CDCl₃, 400 MHz) δ : 7.83 (2H, d, *J* = 8.4 Hz), 7.36 (2H, d, *J* = 8.2 Hz), 3.87–3.86 (2H, m), 3.17 (2H, t, *J* = 5.8 Hz), 2.46 (3H, s), 1.98 (1H, br s).

S-[2-[(tert-Butyldimethylsilyl)oxy]ethyl] 4-methylbenzenesulfonothioate (75). To a solution of **124** (7.38 g, 31.8 mmol) in DMF (37 mL) were added TBSCl (5.51 g, 36.5 mmol) and imidazole (2.60 g, 38.1 mmol). After being stirred for 1.5 h, the mixture was poured into water, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure to give **75** (11.8 g, quant.) as a pale yellow oil, which was used without further purification. ¹H NMR (CDCl₃, 400 MHz) δ : 7.81 (2H, d, *J* = 8.3 Hz), 7.34 (2H, d, *J* = 8.0 Hz), 3.77 (2H, t, *J* = 6.3 Hz), 3.12 (2H, t, *J* = 6.3 Hz), 2.45 (3H, s), 0.85 (9H, s), 0.01 (6H, s).

(2*R*,5*R*)-6-(*Benzyloxy*)-2-[[2-[(*tert-butyldimethylsilyl*)*oxy*]*ethyl*]*thio*]-1,6-*diazabicyclo*[3.2.1]*octan-7-one* (71*c*). To a solution of carboxylic acid 1 (44.0 g, 159 mmol) in CH₂Cl₂ (220 mL) were added 2-mercaptopyridine 1-oxide 4 (21.26 g, 167 mmol) and EDC·HCl (32.1 g, 167 mmol) at 0 °C. The mixture was stirred for 1 h at room temperature in the dark (solution A). To another solution of 75 (138 g, 398 mmol) in CH₂Cl₂ (88 mL) was slowly added the solution A at 0 °C under white Light irradiation. After being stirred for 30 min at 0 °C, water was added, and the layers were separated. The solvent was removed before the crude was purified by flash column chromatography (0–20%, EtOAc/hexane) to give 71c (18.6 g, 28%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.44–7.33 (5H, m), 5.05 (1H, d, *J* = 11.6 Hz), 4.90 (1H, d, *J* = 11.4 Hz), 4.68 (1H, d, *J* = 7.3 Hz), 3.83–3.72 (3H, m), 3.33–3.30 (1H, br m), 2.86–2.79 (2H, m), 2.67–2.61 (1H, m), 2.33–2.23 (1H, m), 1.98–1.92 (1H, m), 1.69–1.53 (2H, m), 0.89 (9H, s), 0.06 (3H, s), 0.06 (3H, s). MS-ESI (*m/z*): 423 [M + H]⁺.

(2R,5R)-6-(Benzyloxy)-2-[(R)-[2-[(tert-butyldimethylsilyl)oxy]ethyl]sulfinyl]-1,6-diazabicy-

clo[3.2.1]octan-7-one (72*c*). To a solution of 71*c* (18.6 g, 43.9 mmol) in CH₂Cl₂ (180 mL) was added 72 wt % *m*-CPBA (10.5 g, 43.9 mmol) at -78 °C. After being stirred for 1 h at -78 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the organic solvent was removed under reduced pressure. The aqueous layer was extracted with EtOAc, and the organic layer was dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (30–70%, EtOAc/hexane) to give 72*c* (16.2 g, 84%, dr = >10/1) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.42–7.37 (5H, m), 5.05 (1H, d, *J* = 11.4 Hz), 4.90 (1H, d, *J* = 11.5 Hz), 4.18 (1H, dd, *J* = 7.7, 3.9 Hz), 4.12–4.00 (2H, m), 3.37–3.36 (1H, br m), 3.24 (1H, d, *J* = 11.8 Hz), 3.19–3.16 (1H, m), 3.02 (1H, d, *J* = 10.9 Hz), 2.77 (1H, dt, *J* = 13.1, 3.9 Hz), 2.39–2.33 (1H, m), 2.17–2.07 (2H, m), 1.83–1.77 (1H, m), 0.90 (9H, s), 0.10 (3H, s), 0.09 (3H, s). MS-ESI (*m*/*z*): 439 [M + H]⁺.

Benzhydryl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[2-[(*tert-butyldimethylsilyl*)*oxy*]*ethyl*]*sulfinyl*]-7-*oxo-1,6-diazabicyclo*[3.2.1]*octan-6-yl*]*oxy*]-2-*fluoroacetate* (87). To a solution of 72c (3.99 g, 9.10 mmol) in MeOH (40 mL) were added 10% Pd(OH)₂ on carbon (1.28 g, 0.32 wt equiv) and DABCO (20 mg, 0.18 mmol). After being stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product, which was used without further purification. To a solution of the crude debenzylated product in DMF (30 mL) were added **22e** (4.41 g, 13.6 mmol) and DBU (1.65 mL, 10.9 mmol) at 0 °C. After being stirred for 30 min at 0 °C, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (20–60%, EtOAc/hexane) to give **87** (3.46 g, 64%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.42–7.28 (10H, m), 6.95 (1H, s), 5.98 (1H, d, ³*J*_{H-F} = 53.3 Hz), 4.27 (1H, dd, *J* = 7.5, 4.7 Hz), 4.13–4.01 (2H, m), 3.96–3.94 (1H, br m), 3.26 (1H, d, *J* = 12.0 Hz), 3.16–3.09 (1H, m), 2.77 (1H, dt, *J* = 13.1, 3.8 Hz), 2.66 (1H, d, *J* = 12.2 Hz), 2.40–2.33 (1H, m), 2.22–2.07 (2H, m), 1.97–1.91 (1H, m), 0.91 (9H, s), 0.12 (3H, s), 0.10 (3H, s). MS-ESI (*m*/*z*): 591 [M + H]⁺.

Sodium (2*R*)-2-*fluoro*-2-*[[(2<i>R*,5*R*)-2-*[(R)*-(2-hydroxyethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1] octan-6-yl]oxyJacetate (99). To a solution of **87** (518 mg, 0.877 mmol) were added anisole (0.383 mL, 3.51 mmol) and 2 M solution of AlCl₃ in MeNO₂ (1.75 mL, 3.51 mmol) at -30 °C. After being stirred for 30 min at -30 °C, the mixture was poured into aq NaHCO₃, and the aqueous layer was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give **99** (221 mg, 76%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.82 (1H, d, ³*J*_{H-F} = 58.6 Hz), 4.49 (1H, t, *J* = 6.1 Hz), 4.27–4.24 (1H, br m), 4.12–4.00 (2H, m), 3.47 (1H, d, *J* = 12.4 Hz), 3.37–3.30 (2H, m), 3.06 (1H, dt, *J* = 13.9, 4.2 Hz), 2.40–2.31 (1H, m), 2.26–2.15 (2H, m), 2.07–1.99 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.8 (d, ³*J*_{C-F} = 27.1 Hz), 171.2, 110.6 (d, ²*J*_{C-F} = 240.6 Hz), 77.1, 62.5, 57.4, 55.0, 48.1, 21.4, 18.8. ¹⁹F NMR (377 MHz, D₂O) δ : -130.2 (d, ³*J*_{H-F} = 58.6 Hz). HPLC: 96.3% (method-C). Anal. calcd for C₁₀H₁₄FN₂O₆SNa(H₂O)_{2.3}: C, 32.14; H, 5.02; F, 5.08; N, 7.50; S, 8.58; Na, 6.15. found: C, 32.01; H, 4.77; F, 4.99; N, 7.69; S, 8.50; Na, 6.52.

S-(3-Hydroxypropyl) 4-methylbenzenesulfonothioate (125). To a solution of potassium 4-methylbenzenesulfonothioate (26.2 g, 116 mmol) in DMF (130 mL) was added 3-bromopropan-1-ol (16.1 g, 116 mmol). After being stirred for 3 h at 50 °C, the mixture was poured into water, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (30–70%, EtOAc/hexane) to give **125** (22.5 g, 79%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (2H, d, *J* = 8.1 Hz), 7.35 (2H, d, *J* = 8.1 Hz), 3.71 (2H, t, *J* = 5.8 Hz), 3.12 (2H, t, *J* = 6.9 Hz), 2.46 (3H, s), 1.93–1.86 (2H, m). MS-ESI (*m*/*z*): 247 [M + H]⁺.

S-[3-[(tert-butyldimethylsilyl)oxy]propyl] 4-methylbenzenesulfonothioate (*126*). To a solution of **125** (22.5 g, 91 mmol) in DMF (100 mL) were added TBSCl (15.8 g, 105 mmol) and imidazole (7.45 g, 109 mmol) at 0 °C. After stirred for 1 h at room temperature, the mixture was diluted with EtOAc/hexane (v/v = 1/1), and the organic layer was washed with 1 N aq HCl, water, and brine before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–20%, EtOAc/hexane) to give **126** (32.5 g, 99%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.81 (2H, d, *J* = 8.3 Hz), 7.33 (2H, d, *J* = 8.1 Hz), 3.60 (2H, t, *J* = 5.7 Hz), 3.07 (2H, t, *J* = 7.1 Hz), 2.45 (3H, s), 1.85–1.79 (2H, m), 0.85 (9H, s), 0.00 (6H, s). MS-ESI (*m/z*): 361 [M + H]⁺.

tert-Butyldimethyl[*3-(phenyldisulfaneyl)propoxy]silane* (76). To 1 N aq NaOH (90.0 mL, 90.0 mol) was added benzenthiol (9.28 mL, 90.0 mol). After being stirring for 30 min, a solution of **126** (32.5 g, 90.0 mol) in MeCN (30 mL) was added, and the mixture was stirred for 1 h. The reaction mixture was extracted with EtOAc, and the organic layer was died over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–10%, EtOAc/hexane) to give **76** (25.9 g, 91%) as a pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.53 (2H, d, *J* = 7.9 Hz), 7.32 (2H, t, *J* = 7.5 Hz), 7.22 (1H, t, *J* = 7.3 Hz), 3.66 (2H, t, *J* = 5.9 Hz), 2.82 (2H, t, *J* = 7.1 Hz), 1.91–1.85 (2H, m), 0.87 (9H, s), 0.03 (6H, s). MS-ESI (*m*/*z*): 315 [M + H]⁺.

Ethyl (2*R*)-2-[[(2*R*,5*R*)-2-[[3-[(tert-butyldimethylsilyl)oxy]propyl]thio]-7-oxo-1,6-diazabicyclo [3.2.1]octan-6-yl]oxy]-2-fluoroacetate (71d). To a solution of **70** (1.15 g, 3.96 mmol) in CH₂Cl₂ (10 mL) were added 2-mercaptopyridine 1-oxide **4** (21.26 g, 167 mmol) and EDC·HCl (32.1 g, 167 mmol). After the mixture was stirred for 1 h at room temperature in the dark, **76** (3.73 g, 11.9 mmol) was added, and the solution was stirred for 30 min at 0 °C under white light irradiation. The solvent was removed before the crude was purified by flash column chromatography (0–20%, EtOAc/hexane) to give **71d** (216 mg, 12%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 5.88 (1H, d, ³*J*_{H-F} = 52.6 Hz), 4.73 (1H, d, *J* = 7.3 Hz), 4.36–4.28 (2H, m), 3.96–3.93 (2H, br m), 3.71–3.64 (2H, m), 2.96–2.93 (1H, m), 2.74–2.58 (2H, m), 2.37–2.26 (1H, m), 2.11–2.07 (1H, m), 1.89–1.73 (3H, m), 1.62–1.58 (1H, m), 1.34 (3H, t, *J* = 7.2 Hz), 0.89 (9H, s), 0.05 (6H, s). MS-ESI (*m*/*z*): 451 [M + H]⁺.

Ethyl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[3-[(tert-butyldimethylsilyl)oxy]propyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (72d). To a solution of 71d (216 mg, 0.479 mmol) in CH₂Cl₂ (3 mL) was added 72 wt % *m*-CPBA (115 mg, 0.479 mmol) at -78 °C. After being stirred for 1 h at -78 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the aqueous layer was extracted with EtOAc twice. The organic layer was dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (50–100%, EtOAc/hexane) to give 72d (240 mg, quant., dr = >10/1). ¹H NMR (400 MHz, CDCl₃) δ : 5.87 (1H, d, ³J_{H-F} = 52.3 Hz), 4.38–4.26 (2H, m), 4.18–4.15 (1H, m), 4.05–4.03 (1H, br m), 3.81–3.70 (2H, m), 3.41 (1H, d, *J* = 12.1 Hz), 3.20–3.15 (1H, m), 3.05 (1H, dt, *J* = 15.1, 6.6 Hz), 2.79–2.72 (1H, m), 2.45–2.37 (1H, m), 2.26–2.21 (1H, m), 2.14 (1H, td, *J* = 14.9, 7.4 Hz), 2.04–1.93 (3H, m), 1.33 (3H, t, *J* = 7.2 Hz), 0.88 (9H, s), 0.05 (6H, s). MS-ESI (*m*/*z*): 467 [M + H]⁺.

Ethyl (2*R*)-2-*fluoro*-2-*[[*(2*R*,5*R*)-2-*[*(*R*)-(3-hydroxypropyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1] octan-6-yl]oxy]acetate (109). To a solution of 72d (240 mg, 0.514 mmol) in CH₂Cl₂ (2 mL) was added 2 M solution of AlCl₃ in MeNO₂ (0.771 mL, 1.54 mmol) at -30 °C. After being stirred for 30 min at -30 °C, the mixture was poured into brine, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (0–10%, MeOH/EtOAc) to give 109 (131 mg, 72%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 5.88 (1H, d, ³*J*_{H-F} = 52.6 Hz), 4.33–4.25 (3H, m), 4.08–4.05 (1H, br m), 3.80–3.77 (2H, br m), 3.36 (1H, d, *J* = 11.8 Hz), 3.22–3.11 (2H, m), 2.93–2.86 (1H, m), 2.50 (1H, br s), 2.42–2.37 (1H, m), 2.27–1.97 (5H, m), 1.34 (3H, t, *J* = 7.0 Hz). MS-ESI (*m*/*z*): 353 [M + H]⁺.

Sodium (2R)-2-fluoro-2-[[(2R,5R)-2-[(R)-(3-hydroxypropyl)sulfinyl]-7-oxo-1,6-diazabicyclo [3.2.1]octan-6-yl]oxy]acetate (114). To a solution of 109 (130 mg, 0.369 mmol) in THF/H₂O (v/v = 2/1, 3 mL) was added 1 N aq NaOH (0.369 mL, 0.369 mmol) at 0 °C. After being stirred for 15 min at 0 °C, the organic solvent was removed under reduced pressure. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give 114 (81.4 mg, 64%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.81 (1H, d, ³*J*_{H-F} = 58.7 Hz), 4.42 (1H, t, *J* = 6.1 Hz), 4.26–4.23 (1H, br m), 3.75 (2H, t, *J* = 6.3 Hz), 3.46 (1H, d, *J* = 12.3 Hz), 3.32 (1H, d, *J* = 12.0 Hz), 3.19–3.12 (1H, m), 2.99–2.91 (1H, m), 2.38–2.29 (1H, m), 2.25–2.13 (2H, m), 2.06– 1.99 (3H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.8 (d, ³*J*_{C-F} = 27.1 Hz), 171.2, 110.7 (d, ²*J*_{C-F} = 241.4 Hz), 76.8, 62.9, 62.5, 48.6, 48.1, 27.4, 21.4, 18.8. ¹⁹F NMR (377 MHz, D₂O) δ : -130.2 (d, *J* = 59.9 Hz). HPLC: 98.3% (method-A). Anal. calcd for C₁₁H₁₆FN₂O₆SNa(H₂O)_{1.7}: C, 35.05; H, 5.19; F, 5.04; N, 7.43; S, 8.51; Na, 6.10. found: C, 35.29; H, 5.14; F, 4.69; N, 7.60; S, 8.08; Na, 5.83.

Benzhydryl (2*R*)-2-*fluoro*-2-*[[*(2*R*,5*R*)-2-*[*(*R*)-(2-hydroxyethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3. 2.1]octan-6-yl]oxy]acetate (93). To a solution of 87 (2.93 g, 4.96 mmol) were added 3A molecular sieves, 1 M tetrabutylammonium fluoride (TBAF) in THF (5.95 mL, 5.95 mmol) and AcOH (0.340 mL, 5.95 mmol) at 0 °C. After being stirred for 4 h at room temperature, the mixture was filtered, and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (0–10%, MeOH/EtOAc) to give 93 (246 mg, 10%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.26 (10H, m), 6.95 (1H, s), 5.98 (1H, d, ³J_{H-F} = 53.3 Hz), 4.36–4.33 (1H, m), 4.21–4.17 (2H, m), 3.98–3.96 (1H, br m), 3.21–3.14 (2H, m), 3.01–2.95 (1H, m), 2.67 (1H, d, *J* = 11.9 Hz), 2.38–2.31 (1H, m), 2.24–2.11 (2H, m), 2.09 (1H, s), 1.97–1.91 (1H, m). MS-ESI (*m*/*z*): 477 [M + H]⁺.

Benzhydryl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[2-(carbamoyloxy)ethyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3. 2.1]octan-6-yl]oxy]-2-fluoroacetate (94). To a solution of 93 (232 mg, 0.487 mmol) in THF (4 mL) was added chlorosulfonyl isocyanate (CSI) (0.076 mL, 0.876 mmol) at -30 °C. After the mixture was stirred for 30 min at -30 °C, 8% aq NaHCO₃ was added, and the mixture was stirred for 1 h at room temperature. Brine was added, and the aqueous layer was extracted with EtOAc twice. After the combined organic layers were dried over Na₂SO₄, the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (0–10%, MeOH/EtOAc) to give 94 (212 mg, 84%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.40–7.29 (10H, m), 6.96 (1H, s), 5.98 (1H, d, *J* = 53.1 Hz), 4.59–4.54 (2H, m), 4.45–4.42 (1H, m), 3.99–3.97 (1H, br m), 3.24–3.17 (1H, m), 3.12 (1H, d, *J* = 12.1 Hz), 3.07–3.01 (1H, m), 2.71 (1H, d, J = 12.1 Hz), 2.38–2.31 (1H, m), 2.22–2.10 (2H, m), 1.97–1.90 (1H, m). MS-ESI (m/z): 520 [M + H]⁺.

Sodium (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[2-(*carbamoyloxy*)*ethyl*]*sulfinyl*]-7-*oxo*-1,6-*diazabicyclo*[3.2.1] *octan*-6-*yl*]*oxy*]-2-fluoroacetate (100). To a solution of 94 (212 mg, 0.408 mmol) were added anisole (0.134 mL, 1.22 mmol) and 2 M solution of AlCl₃ in MeNO₂ (0.612 mL, 1.22 mmol) at -30 °C. After being stirred for 15 min at -30 °C, the mixture was poured into aq NaHCO₃. The precipitate was filtered before the aqueous layer was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–7%, MeCN/H₂O) to give 100 (121 mg, 79%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.82 (1H, d, ³*J*_{H-F} = 58.5 Hz), 4.58–4.46 (3H, m), 4.27–4.24 (1H, br m), 3.51–3.43 (2H, m), 3.33 (1H, d, *J* = 10.8 Hz), 3.20 (1H, ddd, *J* = 14.4, 6.0, 3.7 Hz), 2.40–2.30 (1H, m), 2.26–2.15 (2H, m), 2.09–1.99 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.8 (d, ³*J*_{C-F} = 27.1 Hz), 171.1, 161.5, 110.6 (d, ²*J*_{C-F} = 241.4 Hz), 77.0, 62.5, 60.8, 51.5, 48.0, 21.3, 18.9. ¹⁹F NMR (377 MHz, D₂O) δ : –130.2 (d, ³*J*_{H-F} = 58.6 Hz). HPLC: >99.9% (Method-A). Anal. calcd for C₁₁H₁₅FN₃O₇SNa(H₂O)_{2.0}: C, 32.12; H, 4.66; F, 4.62; N, 10.22; S, 7.79; Na, 5.59. found: C, 32.07; H, 4.73; F, 4.52; N, 10.48; S, 7.67; Na, 5.62.

(*S*)-4-(*Iodomethyl*)-2,2-dimethyl-1,3-dioxolane (127). To a solution of (*R*)-(2,2-dimethyl-1,3-dioxolan-4-yl)methanol (33.0 g, 250 mmol) in toluene (550 mL) were added imidazole (51.0 g, 749 mmol), PPh₃ (79.0 g, 300 mmol), and I₂ (82.0 g, 325 mmol). After being stirred for 2 h at 90 °C, the solvent was removed under reduced pressure. The residue was dissolved to CHCl₃, and the organic layer was washed with 10% aq Na₂S₂O₃ before being dried over MgSO₄. After the removal of solvent, the residue was triturated with diisopropyl ether to precipitate triphenylphosphine oxide. The mixture was filtered, and the solvent was removed. The crude product was purified by flash column chromatography (0–10%, EtOAc/hexane) to give **127** (45.0 g, 74%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 4.31–4.25 (1H, m), 4.15 (1H, dd, *J* = 8.7, 6.1 Hz), 3.79 (1H, dd, *J* = 8.6, 5.5 Hz), 3.26 (1H, dd, *J* = 9.9, 4.6 Hz), 3.14 (1H, dd, *J* = 9.8, 8.5 Hz), 1.46 (3H, s), 1.35 (3H, s).

(S)-S-[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl] 4-methylbenzenesulfonothioate (128). To a solution of potassium 4-methylbenzenesulfonothioate (47.6 g, 210 mmol) in DMF (230 mL) was added 127 (46.2 g, 191 mmol). After being stirred for 1 h at 90 °C, the mixture was diluted with EtoAc. The organic layer was washed with water and dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (10–35%, EtOAc/hexane) to give 128

(45.1 g, 78%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.82 (2H, d, *J* = 8.4 Hz), 7.35 (2H, d, *J* = 8.2 Hz), 4.35–4.29 (1H, m), 4.04 (1H, dd, *J* = 8.7, 6.0 Hz), 3.68 (1H, dd, *J* = 8.7, 5.6 Hz), 3.16–3.15 (2H, m), 2.46 (3H, s), 1.37 (3H, s), 1.30 (3H, s). MS-ESI (*m*/*z*): 303 [M + H]⁺.

(*S*)-2,2-Dimethyl-4-[(phenyldisulfaneyl)methyl]-1,3-dioxolane (77). To 1 N aq NaOH (149 mL, 149 mol) was added benzenthiol (15.4 mL, 149 mol) at 0 °C. After being stirring for 15 min at 0 °C, a solution of **128** (45.1 g, 149 mol) in MeCN (20 mL) was added, and the mixture was stirred for 1 h at 0 °C. The reaction mixture was extracted with EtOAc, and the organic layer was died over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–10%, EtOAc/hexane) to give **77** (30.4 g, 80%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.54 (2H, d, *J* = 7.5 Hz), 7.33 (2H, t, *J* = 7.6 Hz), 7.24 (1H, t, *J* = 7.6 Hz), 4.34 (1H, dt, *J* = 13.0, 5.9 Hz), 4.05 (1H, dd, *J* = 8.4, 6.0 Hz), 3.74 (1H, dd, *J* = 8.4, 5.9 Hz), 2.99 (1H, dd, *J* = 13.6, 5.6 Hz), 2.81 (1H, dd, *J* = 13.5, 7.2 Hz), 1.41 (3H, s), 1.32 (3H, s).

(2R,5R)-6-(*Benzyloxy*)-2-[[[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]thio]-1,6-diazabicyclo[3.2.1]octan-7-one (71e). To a solution of carboxylic acid 1 (11.0 g, 39.8 mmol) in CH₂Cl₂ (70 mL) were added 2-mercaptopyridine 1-oxide 4 (5.32 g, 41.8 mmol) and EDC·HCl (8.01 g, 41.8 mmol). After the mixture was stirred for 1 h at room temperature in the dark, 77 (18.5 g, 36.2 mmol) was added, and the solution was stirred for 30 min at 0 °C under white light irradiation. The solvent was removed before the crude was purified by flash column chromatography (0–50%, EtOAc/hexane) to give 71e (5.30 g, 35%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.44–7.35 (5H, m), 5.04 (1H, d, *J* = 11.5 Hz), 4.90 (1H, d, *J* = 11.5 Hz), 4.70 (1H, d, *J* = 7.0 Hz), 4.37–4.31 (1H, m), 4.08 (1H, dd, *J* = 8.3, 6.2 Hz), 3.73 (1H, d, *J* = 11.5 Hz), 2.34–2.24 (1H, m), 1.99–1.93 (1H, m), 1.69–1.55 (2H, m), 1.42 (3H, s), 1.35 (3H, s). MS-ESI (*m*/*z*): 379 [M + H]⁺.

(2R,5R)-6-(Benzyloxy)-2-[(R)-[[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]sulfinyl]-1,6-diazabicyclo[3.2.1]octan-7-one (72e). To a solution of 71e (5.29 g, 14.0 mmol) in CH₂Cl₂ (60 mL) was added 72 wt % *m*-CPBA (3.35 g, 14.0 mmol) at -78 °C. After being stirred for 1 h at -78 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (0–10%, MeOH/EtOAc) to give **72e** (3.48 g, 63%, dr = >10/1) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.44–7.37 (5H, m), 5.04 (1H, d, *J* = 11.5 Hz), 4.90 (1H, d, *J* = 11.5 Hz), 4.64–4.57 (1H, m), 4.18 (1H, dd, *J* = 8.5, 6.1 Hz), 4.13 (1H, dd, *J* = 7.3, 4.6 Hz), 3.73 (1H, dd, *J* = 8.5, 6.2 Hz), 3.39–3.39 (1H, br m), 3.26 (1H, dd, *J* = 13.1, 9.0 Hz), 3.19 (1H, d, *J* = 11.8 Hz), 3.04–3.02 (1H, br m), 2.80 (1H, dd, *J* = 13.1, 3.8 Hz), 2.40–2.32 (1H, m), 2.20–2.10 (2H, m), 1.82–1.76 (1H, m), 1.43 (3H, s), 1.38 (3H, s). MS-ESI (*m*/*z*): 395 [M + H]⁺.

Ethyl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[[(S)-2,2-dimethyl-1,3-dioxolan-4-yl]methyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (88). To a solution of 72e (3.48 g, 8.82 mmol) in THF/MeOH (v/v = 1/1, 35 mL) were added 10% Pd(OH)₂ on carbon (0.619 g, 0.18 wt equiv) and DABCO (20 mg, 0.18 mmol). After being stirred under a H₂ atmosphere (1 atm) for 30 min, the mixture was filtered, and the solvent was removed under reduced pressure. Trituration with diisopropyl ether gave the debenzylated product (2.09 g, 78%). To a solution of the debenzylated product (2.09 g, 6.87 mmol) in DMF (20 mL) were added 22d (61.5 wt%, 2.48 g, 8.24 mmol) and K₂CO₃ (1.04 g, 7.55 mmol) at -40 °C. After being stirred overnight at -20 °C, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–10%, MeOH/EtOAc) to give 88 (2.45 g, 68%) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ : 5.88 (1H, d, ³J_{H-F} = 52.3 Hz), 4.61–4.59 (1H, m), 4.37–4.29 (2H, m), 4.24–4.21 (2H, m), 4.07–4.05 (1H, br m), 3.73 (1H, dd, J = 8.5, 6.2 Hz), 3.38 (1H, d, J = 12.1 Hz), 3.25–3.19 (2H, m), 2.82 (1H, dd, J = 13.0, 3.7 Hz), 2.46–2.38 (1H, m), 2.29–2.12 (2H, m), 2.03– 1.94 (1H, m), 1.44 (3H, s), 1.38 (3H, s), 1.35 (3H, q, J = 7.2 Hz). MS-ESI (*m*/z): 409 [M + H]⁺.

Ethyl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[(*S*)-2,3-dihydroxypropyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1] octan-6-yl]oxy]-2-fluoroacetate (95). To a solution of 88 (340 mg, 0.832 mmol) in CH₂Cl₂ (3.4 mL) were added anisole (0.546 mL, 4.99 mmol) and 2 M solution of AlCl₃ in MeNO₂ (2.50 mL, 4.99 mmol) at -30 °C. After being stirred for 20 min at -30 °C, the mixture was poured into brine. The aqueous layer was extracted with THF four times and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (0–10%, MeOH/CHCl₃) to give 95 (240 mg, 78%) as a pale-yellow gum. ¹H NMR (400 MHz, CDCl₃) δ : 5.87 (1H, d, ³*J*_{H-F} = 52.3 Hz), 4.40–4.28 (4H, m), 4.09–4.06 (1H, br m), 3.77 (1H, dd, *J* = 11.4, 3.7 Hz), 3.63 (1H, dd, *J* = 11.4, 5.6 Hz), 3.33 (1H, d, *J* = 12.2 Hz), 3.26–3.20 (2H, m), 2.87 (1H, dd, *J* = 13.6, 2.8 Hz), 2.43–2.36 (1H, m), 2.30–2.16 (2H, m), 2.04–1.97 (1H, m), 1.33 (3H, t, *J* = 7.2 Hz). MS-ESI (*m*/*z*): 369 [M + H]⁺.

Sodium (2R)-2-[[(2R,5R)-2-[(R)-[(S)-2,3-dihydroxypropyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1] octan-6-yl]oxy]-2-fluoroacetate (101). To a solution of 95 (64.8 mg, 0.176 mmol) in THF/H₂O (v/v = 2/1, 3 mL) was added 1 N aq NaOH (0.176 mL, 0.176 mmol) at 0 °C. After being stirred for 15 min at 0 °C, the organic solvent was removed under reduced pressure. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–10%, MeCN/H₂O) to give 101 (27.9

mg, 43%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.81 (1H, d, ³*J*_{*H*-*F*} = 58.7 Hz), 4.45 (1H, t, *J* = 6.1 Hz), 4.26–4.23 (1H, br m), 4.19–4.16 (1H, m), 3.72 (1H, dd, *J* = 11.8, 4.0 Hz), 3.62 (1H, dd, *J* = 11.9, 5.9 Hz), 3.46 (1H, d, *J* = 12.0 Hz), 3.33 (1H, d, *J* = 11.8 Hz), 3.19 (1H, dd, *J* = 13.6, 10.8 Hz), 3.02 (1H, dd, *J* = 13.6, 2.3 Hz), 2.36–2.30 (1H, m), 2.25–2.14 (2H, m), 2.07–2.02 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.9 (d, ³*J*_{*C*-*F*} = 27.1 Hz), 171.2, 110.7 (d, ²*J*_{*C*-*F*} = 241.4 Hz), 77.3, 68.5, 67.7, 62.6, 56.2, 48.2, 21.4, 18.8. ¹⁹F NMR (377 MHz, D₂O) δ : –130.1 (d, ³*J*_{*H*-*F*} = 59.9 Hz). HPLC: >99.9% (method-A).

3-Bromo-2-(((4-methoxybenzyl)oxy)imino)propanoic acid (129). To a solution of 3-bromo-2-oxopropanoic acid (20.0 g, 120 mmol) in MeOH (400 mL) were added *O*-(4-methoxybenzyl)hydroxylamine hydrochloride (22.7 g, 120 mmol) and NaOAc (19.7 g, 240 mmol) at 0 °C. After being stirred for 6 h at room temperature, the mixture was filtered, and the solvent was removed under reduced pressure. To the residue was added 1 N aq HCl, and the aqueous layer was extracted with EtOAc twice. After the removal of the solvent, **129** (37.4 g, quant.) was recrystallized from EtOH/H₂O. **Note**: Compound **129** was obtained as a mixture of geometrical isomers (61/39). The geometry of the major isomer was unknown. ¹H NMR of major isomer (400 MHz, CDCl₃) δ : 7.32 (2H, d, *J* = 8.6 Hz), 6.92 (2H, d, *J* = 8.3 Hz), 5.32 (2H, s), 4.18 (2H, s), 3.83 (3H, s). MS-ESI (*m/z*): 300 [M – H]⁻.

2-(*Trimethylsilyl*)*ethyl* 3-*bromo-2-[[(4-methoxybenzyl*)*oxy*]*imino*]*propanoate* (130). To a solution of **129** (36.2 g, 120 mmol) in CH₂Cl₂ (360 mL) were added 2-(trimethylsilyl)ethan-1-ol (17.0 g, 144 mmol), DMAP (4.39 g, 35.9 mmol), and EDC·HCl (27.6 g, 144 mmol) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was washed with water, and the organic layer was dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–25%, EtOAc/hexane) to give **130** (29.6 g, 62%) as a colorless oil. **Note**: Compound **130** was obtained as a mixture of geometrical isomers (75/25). The geometry of the major isomer was unknown. ¹H NMR of major isomer (400 MHz, CDCl₃) δ : 7.32 (2H, d, *J* = 8.6 Hz), 6.90 (2H, d, *J* = 8.6 Hz), 5.30 (2H, s), 4.39 (2H, t, *J* = 8.4 Hz), 4.35 (2H, s), 3.82 (3H, s), 1.12 (2H, t, *J* = 8.4 Hz), 0.07 (9H, s). MS-ESI (*m/z*): 402 [M + H]⁺.

2-(*Trimethylsilyl*)*ethyl* 2-[[(4-methoxybenzyl)oxy]*imino*]-3-(*tosylthio*)*propanoate* (78). To a solution of potassium 4-methylbenzenesulfonothioate (16.7 g, 73.7 mmol) in DMF (150 mL) was added **130** (29.6 g, 73.7 mmol). After being stirred for 1 h at 50 °C, the mixture was diluted with EtOAc/hexane (v/v = 1/1). The organic layer was washed with water and brine before being dried over Na₂SO₄. After

the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–40%, EtOAc/hexane) to give **78** (37.6 g, quant.) as a colorless oil. **Note**: Compound **78** was obtained as a single isomer. The geometry was unknown. ¹H NMR (400 MHz, CDCl₃) δ : 7.78 (2H, d, *J* = 8.1 Hz), 7.30 (2H, d, *J* = 8.6 Hz), 7.26 (2H, d, *J* = 8.1 Hz), 6.90 (2H, d, *J* = 8.6 Hz), 5.22 (2H, s), 4.32 (2H, t, *J* = 8.6 Hz), 3.97 (2H, s), 3.82 (3H, s), 2.42 (3H, s), 1.10–1.05 (2H, m), 0.06 (9H, s). MS-ESI (*m*/*z*): 510 [M + H]⁺.

2-(*Trimethylsilyl*)*ethyl* 3-[[(2R,5R)-6-(*benzyloxy*)-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-2-*y*]*Jthio*]-2-[[(4-*methoxybenzyl*)*oxy*]*imino*]*propanoate* (71*f*). To a solution of carboxylic acid 1 (5.00 g, 18.1 mmol) in CH₂Cl₂ (25 mL) were added 2-mercaptopyridine 1-oxide 4 (2.42 g, 19.0 mmol) and EDC·HCl (3.64 g, 19.0 mmol). After the mixture was stirred for 1 h at room temperature in the dark, **78** (18.5 g, 36.2 mmol) was added, and the solution was stirred for 30 min at 0 °C under white light irradiation. The solvent was removed before the crude was purified by flash column chromatography (0–50%, EtOAc/hexane) to give **71f** (2.80 g, 26%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.34 (7H, m), 6.88 (2H, d, *J* = 8.6 Hz), 5.26 (2H, s), 5.04 (1H, d, *J* = 11.6 Hz), 4.88 (1H, d, *J* = 11.4 Hz), 4.73 (1H, d, *J* = 7.6 Hz), 4.37–4.27 (2H, m), 3.80 (3H, s), 3.71 (1H, d, *J* = 12.9 Hz), 3.58 (2H, d, *J* = 12.4 Hz), 3.24 (1H, s), 2.71 (1H, d, *J* = 11.4 Hz), 2.28–2.18 (1H, m), 1.89–1.88 (1H, m), 1.60–1.44 (2H, m), 1.10 (2H, t, *J* = 8.6 Hz), 0.06 (9H, s). MS-ESI (*m*/*z*): 486 [M + H]⁺.

2-(*Trimethylsilyl*)*ethyl* 3-[(R)-[(2R,5R)-6-(*benzyloxy*)-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-2-*yl*] sulfinyl]-2-[[(4-methoxybenzyl)oxy]imino]propanoate (72f). To a solution of 71f (2.80 g, 4.06 mmol) in CH₂Cl₂ (30 mL) was added 72 wt % *m*-CPBA (0.974 g, 4.06 mmol) at -60 °C. After being stirred for 1 h at -10 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (50–100%, EtOAc/hexane) to give 72f (1.93 g, 79%, dr = >10/1) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ : 7.42–7.37 (5H, m), 7.32 (2H, d, *J* = 8.6 Hz), 6.88 (2H, d, *J* = 8.6 Hz), 5.30 (1H, d, *J* = 11.4 Hz), 5.26 (1H, d, *J* = 11.4 Hz), 5.03 (1H, d, *J* = 11.4 Hz), 4.87 (1H, d, *J* = 11.4 Hz), 4.39–4.35 (2H, m), 4.18–4.15 (2H, m), 4.01 (1H, d, *J* = 12.1 Hz), 3.76 (3H, s), 3.28–3.27 (1H, br m), 2.98 (1H, d, *J* = 11.9 Hz), 2.85–2.82 (1H, br m), 2.35–2.29 (1H, m), 2.04–1.96 (2H, m), 1.71–1.63 (1H, m), 1.13–1.09 (2H, m), 0.06 (9H, s). MS-ESI (*m*/*z*): 602 [M + H]⁺.

2-(Trimethylsilyl)ethyl 3-[(R)-[(2R,5R)-6-[(R)-2-(benzhydryloxy)-1-fluoro-2-oxoethoxy]-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]sulfinyl]-2-[[(4-methoxybenzyl)oxy]imino]propanoate (89). To a solution of **72f** (1.92 g, 3.19 mmol) in MeOH (20 mL) were added 10% $Pd(OH)_2$ on carbon (1.20 g, 0.63 wt equiv) and DABCO (36 mg, 0.32 mmol). After being stirred under a H₂ atmosphere (1 atm) for 15 min, the mixture was filtered, and the solvent was removed to give the crude product, which was used without further purification. To a solution of the crude debenzylated product in DMF (15 mL) were added 22e (1.34 g, 4.15 mmol) and DBU (0.481 mL, 3.19 mmol) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was poured into 10% ag citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (20–50%, EtOAc/hexane) to give **89** (930 mg, 39%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) δ: 7.40–7.29 (12H, m), 6.94 (1H, s), 6.89 (2H, d, J = 8.6 Hz), 5.96 (1H, d, ${}^{3}J_{H-F} = 53.3$ Hz), 5.32 (1H, d, J= 11.4 Hz), 5.28 (1H, d, J = 11.4 Hz), 4.38 (2H, dd, J = 9.6, 7.3 Hz), 4.24–4.20 (1H, m), 4.12 (1H, d, J = 12.1 Hz), 3.98 (1H, d, J = 12.1 Hz), 3.87–3.84 (1H, br m), 3.80 (3H, s), 3.09 (1H, d, J = 12.1 Hz), 2.55 (1H, d, J = 11.9 Hz), 2.38–2.31 (1H, m), 2.09–1.94 (2H, m), 1.86–1.81 (1H, m), 1.12 (2H, t, J = 8.7 Hz), 0.06 (9H, s). MS-ESI (*m*/*z*): 755 [M + H]⁺.

Benzhydryl (2R)-2-[[(2R,5R)-2-[(R)-[3-amino-2-[[(4-methoxybenzyl)oxy]imino]-3-oxopropyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (96). To a solution of 89 (929 mg, 1.23 mmol) in DMF (10 mL) was added tris(dimethylamino)sulfonium difluorotrimethylsilicate (TASF) (407 mg, 1.48 mmol). After being stirred for 1 h, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄. The solvent was removed under reduced pressure to give a crude product. To a solution of the crude carboxylic acid in CH₂Cl₂ (10 mL) were added Et₃N (0.256 mL, 1.85 mmol) and isobutyl chloroformate (0.178 mL, 1.36 mmol) at 0 °C. After being stirred for 15 min at 0 °C, 28% aq. ammonia (0.286 mL, 3.69 mmol) was added, and the mixture was stirred for 15 min at 0 °C. The mixture was poured into water, and the aqueous layer was extracted with CH₂Cl₂ twice. The combined organic layers were dried over MgSO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (50-100%, EtOAc/hexane) to give 96 (517 mg, 64%) as a white amorphous solid. ¹H NMR (400MHz, CDCl₃) δ: 7.41–7.27 (12H, m), 6.94 (1H, s), 6.91 (2H, d, J = 8.7 Hz), 6.59 (1H, br s), 5.97 (1H, d, ${}^{3}J_{H-F} = 53.3$ Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.23 (2H, s), 4.24 (1H, t, J = 53.3 Hz), 5.29 (1H, br s), 5.2 6.4 Hz), 4.12 (1H, d, J = 11.9 Hz), 4.03 (1H, d, J = 11.9 Hz), 3.91–3.88 (1H, br m), 3.81 (3H, s), 3.22 (1H, d, J = 12.2 Hz), 2.63 (1H, d, J = 12.2 Hz), 2.42–2.35 (1H, m), 2.14–2.00 (2H, m), 1.90–1.83 (1H, m). MS-ESI (m/z): 653 [M + H]⁺.

Sodium (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[3-amino-2-(hydroxyimino)-3-oxopropyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (102). To a solution of 96 (238 mg, 0.365 mmol) in CH₂Cl₂ (4 mL) were added anisole (0.159 mL, 1.46 mmol) and 2 M solution of AlCl₃ in MeNO₂ (0.729 mL, 1.46 mmol) at -30 °C. After being stirred for 1 h at -10 °C, the mixture was poured into aq NaHCO₃. The precipitate was filtered before the aqueous layer was washed with EtOAc. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–7%, MeCN/H₂O) to give 102 (69.7 mg, 49%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.82 (1H, d, *J* = 58.6 Hz), 4.53 (1H, t, *J* = 6.3 Hz), 4.31 (2H, s), 4.26–4.23 (1H, br m), 3.42 (1H, d, *J* = 12.4 Hz), 3.33–3.30 (1H, m), 2.39–2.32 (1H, m), 2.26–2.21 (2H, m), 2.05–2.01 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.9 (d, ³*J*_{C-F} = 27.1 Hz), 170.9, 169.2, 146.9, 110.7 (d, ²*J*_{C-F} = 240.6 Hz), 78.2, 62.4, 48.3, 46.0, 21.4, 18.9. ¹⁹F NMR (377 MHz, D₂O) δ : -130.2 (d, ³*J*_{H-F} = 58.6 Hz). HPLC: 96.1% (method-D).

tert-Butyl [2-(*phenyldisulfaneyl*)*ethyl*]*carbamate* (79). To 1 N aq NaOH (207 mL, 207 mmol) were added *tert*-butyl (2-mercaptoethyl)carbamate (36.7 g, 207 mmol) and a solution of *S*-phenyl benzene-sulfonothioate⁵ (51.9 g, 207 mmol) in MeCN (100 mL) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was poured into brine, and the aqueous layer was extracted with EtOAc. After the organic layer was dried over Na₂SO₄, the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (0–20%, EtOAc/hexane) to give **79** (38.5 g, 65%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.56-7.53 (2H, m), 7.33 (2H, t, *J* = 7.6 Hz), 7.26–7.22 (1H, m), 4.79 (1H, br s), 3.43-3.42 (2H, m), 2.84 (2H, t, *J* = 6.2 Hz), 1.43 (9H, s). MS-ESI (*m/z*): 286 [M + H]⁺.

tert-Butyl [2-[[(2R,5R)-6-(benzyloxy)-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]thio]ethyl]carbamate (71g). To a solution of carboxylic acid 1 (10.0 g, 36.2 mmol) in CH₂Cl₂ (100 mL) were added 2mercaptopyridine 1-oxide 4 (5.06 g, 39.8 mmol) and EDC·HCl (7.63 g, 39.8 mmol). The mixture was stirred for 1 h at room temperature in the dark (solution A). To a solution of **79** (31.0 g, 109 mmol) in CH₂Cl₂ (30 mL) was slowly added solution A at 0 °C under white light irradiation, and the mixture was stirred for 30 min. The solvent was removed before the crude was purified by flash column chromatography (10–30%, EtOAc/hexane) to give **71g** (2.88 g, 20%) as a pale yellow gum. ¹H NMR (400 MHz, CDCl₃) δ : 7.44–7.35 (5H, m), 5.05 (1H, d, *J* = 11.4 Hz), 5.01 (1H, br s), 4.90 (1H, d, *J* = 11.4 Hz), 4.64

(1H, d, *J* = 7.2 Hz), 3.74 (1H, d, *J* = 11.4 Hz), 3.39–3.27 (3H, m), 2.86–2.79 (2H, m), 2.68–2.62 (1H, m), 2.35–2.25 (1H, m), 1.99–1.93 (1H, m), 1.68–1.54 (2H, m), 1.44 (9H, s). MS-ESI (*m/z*): 408 [M + H]⁺.

tert-Butyl [2-[(*R*)-[(2*R*,5*R*)-6-(*benzyloxy*)-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-2-*yl*]*sulfinyl*]*ethyl*] *carbamate* (72*g*). To a solution of **71g** (1.00 g, 2.45 mmol) in CH₂Cl₂ (20 mL) was added 72 wt % *m*-CPBA (0.588 g, 2.45 mmol) at -78 °C. After being stirred for 1 h at -78 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (30%, acetone/toluene) to give **72g** (834 mg, 80%, dr = >10/1) as a white gum. ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.37 (5H, m), 5.12 (1H, br s), 5.04 (1H, d, *J* = 11.4 Hz), 4.89 (1H, d, *J* = 11.4 Hz), 4.16–4.13 (1H, m), 3.67–3.65 (2H, br m), 3.39–3.38 (1H, br m), 3.27–3.20 (1H, m), 3.17 (1H, d, *J* = 11.8 Hz), 3.03 (1H, d, *J* = 12.0 Hz), 2.85 (1H, dt, *J* = 13.3, 5.5 Hz), 2.38–2.28 (1H, m), 2.19–2.10 (2H, m), 1.81–1.74 (1H, m), 1.44 (9H, s). MS-ESI (*m*/*z*): 424 [M + H]⁺.

Benzhydryl (2*R*)-2-[(2*R*,5*R*)-2-[(*R*)-[2-[(*tert-butoxycarbonyl)amino]ethyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (90). To a solution of 72g (883 mg, 3.19 mmol) in MeOH (10 mL) were added 10% Pd(OH)₂ on carbon (146 mg, 0.17 wt equiv) and DABCO (5 mg, 0.04 mmol). After being stirred under a H₂ atmosphere (1 atm) for 1 h, the mixture was filtered, and the solvent was removed to give the crude product. A part of the product was used for the next step. To a solution of the crude debenzylated product (241 mg, 0.723 mmol) in DMF (2 mL) were added 22e (327 mg, 1.01 mmol) and DBU (0.131 mL, 0.867 mmol) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (50–100%, EtOAc/hexane) to give 90 (286 mg, 69%) as a white amorphous solid. ¹H NMR (400 MHz, CDCl₃) &: 7.41–7.29 (10H, m), 6.95 (1H, s), 5.98 (1H, d, ³<i>J*_{H-F} = 53.3 Hz), 5.10 (1H, br s), 4.19 (1H, t, *J* = 6.2 Hz), 3.97–3.94 (1H, br m), 3.66–3.65 (2H, br m), 3.24–3.15 (2H, m), 2.83 (1H, dt, *J* = 13.2, 5.6 Hz), 2.65 (1H, d, *J* = 12.4 Hz), 2.37–2.30 (1H, m), 2.23–2.07 (2H, m), 1.96–1.88 (1H, m), 1.45 (9H, s). MS-ESI (*m*/z): 576 [M + H]⁺.

(2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-(3-Aminopropyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2fluoroacetic acid-2,2,2-trifluoroacetic acid (1/1) (103). To a solution of **90** (286 mg, 0.497 mmol) in CH₂Cl₂ (3 mL) was added TFA (3 mL) at 0 °C. After the mixture was stirred for 15 min at 0 °C, the solvent was removed under reduced pressure. The crude was triturated with ^{*i*}PrOAc to give **103** (107 mg, 51%). ¹H NMR (400 MHz, D₂O) δ : 5.81 (1H, d, *J* = 58.4 Hz), 4.52 (1H, t, *J* = 6.7 Hz), 4.26–4.24 (1H, br m), 3.59–3.47 (3H, m), 3.41 (1H, d, *J* = 12.1 Hz), 3.34–3.25 (2H, m), 2.36–2.30 (1H, m), 2.24– 2.19 (2H, m), 2.07–2.01 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 171.3, 170.9 (d, ³*J*_{C-F} = 24.9 Hz), 165.9 (q, ³*J*_{C-F} = 35.5 Hz) (TFA), 119.3 (q, ²*J*_{C-F} = 291.7 Hz) (TFA), 110.0 (d, ²*J*_{C-F} = 242.1 Hz), 77.3, 63.0, 48.5, 47.9, 36.8, 21.2, 19.3. ¹⁹F NMR (377 MHz, D₂O) δ : -75.6 (s) (TFA), -132.5 (d, ³*J*_{H-F} = 55.9 Hz). HPLC: 96.7% (method-A). Anal. calcd for C₁₀H₁₆FN₃O₅S(TFA)_{0.7}(^{*i*}PrOAc)_{0.1}(H₂O)_{0.6}: C, 34.85; H, 4.64; F, 14.36; N, 10.25; S, 7.82. found: C, 35.04; H, 4.58; F, 13.90; N, 10.29; S, 7.67.

Methyl (2R)-2-[[(2R,5R)-2-[(R)-[2-[(tert-butoxycarbonyl)amino]ethyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (91). To a solution of 72g (833 mg, 3.19 mmol) in MeOH (40 mL) were added 5% Pd/C (4.19 g, 5.03 wt equiv). After being stirred under a H₂ atmosphere (1 atm) for 0.5 h, the mixture was filtered, and the solvent was removed to give the crude product. A part of the product was used for the next step. To a solution of the crude debenzylated product (656 mg, 1.97 mmol) in DMF (6 mL) were added methyl 2-bromo-2-fluoroacetate 22f (370 mg, 2.16 mmol) and K₂CO₃ (272 mg, 1.97 mmol) at -40 °C. After being stirred overnight at -40 °C, the mixture was poured into 10% aq citric acid, and the aqueous layer was extracted with EtOAc twice. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (25%, acetone/toluene) to give 91 (164 mg, 20%) as a white amorphous solid. Note: Both stereo isomers were obtained because racemic methyl 2-bromo-2-fluoroacetate was used. The polar isomer was isolated on the assumption that it would be a desired isomer described in the scheme. ¹H NMR (400 MHz, CDCl₃) δ : 5.89 (1H, d, ³J_{H-F} = 52.3 Hz), 5.10 (1H, br s), 4.22 (1H, dd, J = 7.3, 5.0 Hz), 4.06–4.04 (1H, br m), 3.87 (3H, s), 3.67–3.66 (2H, m), 3.35 (1H, d, J = 12.2 Hz), 3.27–3.20 (2H, m), 2.85 (1H, dt, J = 13.3, 5.5 Hz), 2.46–2.36 (1H, m), 2.29–2.12 (2H, m), 2.02–1.94 (1H, m), 1.44 (9H, s). MS-ESI (*m/z*): 424 [M + H]⁺.

Methyl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-(2-acetamidoethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (97). To a solution of 91 (164 mg, 0.387 mmol) in CH₂Cl₂ (2 mL) was added TFA (2 mL) at 0 °C. After the mixture was stirred for 15 min at 0 °C, the solvent was removed under reduced pressure to give a crude product. To a solution of the crude product in CH₂Cl₂ (2 mL) were added Et₃N (0.268 mL, 1.93 mmol) and Ac₂O (0.037 mL, 0.386 mmol) at -78 °C. After the mixture was stirred at from -78 °C to room temperature, the mixture was directly purified by flash column chromatography (0–10%, MeOH/CHCl₃) to give 97 (142 mg, quant.) as a white gum. ¹H NMR (400 MHz, CDCl₃) δ : 6.29 (1H, br s), 5.89 (1H, d, ³*J*_{H-F} = 52.2 Hz), 4.25 (1H, t, *J* = 6.2 Hz), 4.08–4.05 (1H, br m), 3.91–3.72 (2H, m), 3.87 (3H, s), 3.32 (1H, d, *J* = 12.2 Hz), 3.28–3.20 (2H, m), 2.94–2.88 (1H, m), 2.42– 2.34 (1H, m), 2.29–2.13 (2H, m), 2.03–1.97 (1H, m), 1.99 (3H, s). MS-ESI (*m*/*z*): 366 [M + H]⁺.

Sodium (2R)-2-[[(2R,5R)-2-[(R)-(2-acetamidoethyl)sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (104). To a solution of 97 (142 mg, 0.389 mmol) in THF/H₂O (v/v = 2/1, 3 mL) was added 1 N aq NaOH (0.389 mL, 0.389 mmol) at 0 °C. After the mixture was stirred for 15 min at 0 °C, the organic solvent was removed under reduced pressure. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–20%, MeCN/H₂O) to give 104 (96.4 mg, 66%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.81 (1H, d, ³*J*_{*H*-*F*} = 58.6 Hz), 4.45 (1H, t, *J* = 6.3 Hz), 4.26–4.23 (1H, br m), 3.68 (2H, t, *J* = 6.2 Hz), 3.43 (1H, d, *J* = 12.3 Hz), 3.35– 3.28 (2H, m), 3.05 (1H, dt, *J* = 13.7, 5.5 Hz), 2.35–2.28 (1H, m), 2.24–2.12 (2H, m), 2.06–1.97 (4H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 177.3, 171.8 (d, ³*J*_{*C*-*F*} = 27.1 Hz), 171.1, 110.7 (d, ²*J*_{*C*-*F*} = 241.4 Hz), 77.1, 62.5, 52.1, 48.0, 36.1, 24.7, 21.3, 18.9. ¹⁹F NMR (377 MHz, D₂O) δ : –130.0 (d, ³*J*_{*H*-*F*} = 58.6 Hz). HPLC: 99.8% (method-A). Anal. calcd for C₁₂H₁₇FN₃O₆SNa(H₂O)_{1.8}: C, 35.52; H, 5.12; F, 4.68; N, 10.36; S, 7.90; Na, 5.67. found: C, 35.49; H, 5.12; F, 4.77; N, 10.51; S, 7.69; Na, 5.39.

S-[(5-Methyl-1,3,4-oxadiazol-2-yl)methyl] 4-methylbenzenesulfonothioate (80). To a solution of 2-(chloromethyl)-5-methyl-1,3,4-oxadiazole (1.40 g, 10.6 mmol) in DMF (7 mL) was added potassium 4-methylbenzenesulfonothioate (2.30 g, 10.6 mmol). After being stirred for 2 h, the mixture was poured into water, and the aqueous layer was extracted EtOAc twice. The combined organic layers were washed with water and brine before being dried over Na₂SO₄. After the solvent was removed under reduced pressure, recrystallization from EtOAc/diisopropyl ether gave **80** (1.32 g, 44%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.80 (2H, d, *J* = 8.4 Hz), 7.34 (2H, d, *J* = 8.0 Hz), 4.38 (2H, s), 2.46 (3H, s), 2.40 (3H, s).

(2*R*,5*R*)-6-(*Benzyloxy*)-2-[[(5-methyl-1,3,4-oxadiazol-2-yl)methyl]thio]-1,6-diazabicyclo[3.2.1]octan-7-one (71h). To a solution of carboxylic acid 1 (430 mg, 1.56 mmol) in CH₂Cl₂ (2 mL) were added 2-mercaptopyridine 1-oxide 4 (208 mg, 1.63 mmol) and EDC·HCl (313 mg, 1.63 mmol). The mixture was stirred for 1 h at room temperature in the dark (solution A). To a solution of **80** (1.33 g, 4.67 mmol) in CH₂Cl₂ (2 mL) was slowly added solution A at 0 °C under white light irradiation, and the mixture was stirred for 30 min. The solvent was removed before the crude was purified by flash column chromatography (20–60%, EtOAc/hexane) to give **71h** (383 mg, 68%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 7.44–7.36 (5H, m), 5.05 (1H, d, *J* = 11.4 Hz), 4.91 (1H, d, *J* = 11.5 Hz), 4.81 (1H, d, *J* = 6.7 Hz), 4.05 (1H, t, *J* = 11.1 Hz), 3.85 (1H, d, *J* = 15.2 Hz), 3.69 (1H, d, *J* = 11.7 Hz), 3.36–3.34 (1H, m), 2.87–2.84 (1H, m), 2.53 (3H, s), 2.36–2.26 (1H, m), 2.03–1.96 (1H, m), 1.69–1.57 (2H, m).

(2R,5R)-6-(Benzyloxy)-2-[(R)-[(5-methyl-1,3,4-oxadiazol-2-yl)methyl]sulfinyl]-1,6-diazabicyclo[3.2.1]octan-7-one (72h). To a solution of **71h** (375 mg, 1.04 mmol) in CH₂Cl₂ (4 mL) was slowly added a solution of 69 wt % *m*-CPBA (273 mg, 1.09 mmol) in CH₂Cl₂ (2 mL) at -40 °C. After the mixture was stirred for 2 h at -40 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (60–100%, EtOAc/hexane) to give **72h** (340 mg, 87%, dr = 7/1) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ : 7.41–7.39 (5H, m), 5.04 (1H, d, *J* = 11.4 Hz), 4.90 (1H, d, *J* = 11.4 Hz), 4.54 (1H, d, *J* = 14.2 Hz), 4.39 (1H, t, *J* = 6.1 Hz), 4.22 (1H, d, *J* = 14.2 Hz), 3.42–3.41 (1H, m), 3.13 (1H, d, *J* = 11.9 Hz), 3.05 (1H, d, *J* = 11.8 Hz), 2.56 (3H, s), 2.36–2.27 (1H, m), 2.24–2.14 (2H, m), 1.83–1.74 (1H, m).

Benzhydryl (2*R*)-2-*fluoro*-2-*[[(2R,5R)*-2-*[(R)-[(5-methyl*-1,3,4-oxadiazol-2-yl)methyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate (92). To a solution of 72h (340 mg, 0.903 mmol) in MeOH (7 mL) were added 10% Pd(OH)₂ on carbon (951 mg, 2.80 wt equiv) and DABCO (2.0 mg, 0.02 mmol). After being stirred under a H₂ atmosphere (1 atm) for 8 h, the mixture was filtered, and the solvent was removed to give the crude product. To a solution of DBU in DMF (534 μ L, 0.534 mmol) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was poured into water, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were washed with water and dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (20–100%, EtOAc/hexane) to give **92** (43.0 mg, 9.0%) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ : 7.35–7.30 (10H, m), 6.95 (1H, s), 5.98 (1H, d, ³J_{H-F} = 53.2 Hz), 4.50–4.43 (2H, m), 4.20 (1H, d, *J* = 14.2 Hz), 4.00–3.97 (1H, br m), 3.14 (1H, d, *J* = 12.4 Hz), 2.92 (1H, d, *J* = 28.9 Hz), 2.57 (3H, s), 2.35–2.29 (1H, m), 2.24–2.15 (2H, m), 1.97–1.90 (1H, m).

Sodium (2*R*)-2-fluoro-2-[[(2*R*,5*R*)-2-[(*R*)-[(5-methyl-1,3,4-oxadiazol-2-yl)methyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]acetate (105). To a solution of **92** (40.0 mg, 0.076 mmol) in THF/H₂O (v/v = 2/1, 1.2 mL) was added 1 N aq NaOH (76 µL, 0.076 mmol) at 0 °C. After the mixture was stirred for 1 h at 0 °C, the reaction was quenched by dry ice, and the organic solvent was removed under reduced pressure. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–12%, MeCN/H₂O) to give **105** (21.5 mg, 72%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 5.82 (1H, d, ³J_{H-F} = 58.6 Hz), 4.63–4.61 (2H, m), 4.28–4.25 (1H, br m), 3.43 (1H, d, J = 12.3 Hz), 3.33 (1H, d, J = 11.8 Hz), 2.59 (3H, s), 2.38–2.16 (3H, m), 2.08–2.05 (1H, m). ¹³C{¹H} NMR (100MHz, D₂O) δ : 171.8 (d, ³J_{C-F} = 26.4 Hz), 170.7, 170.2, 162.0, 110.7 (d, ²J_{C-F} = 240.6 Hz), 76.8, 62.3, 48.2, 21.1, 19.2, 13.0. ¹⁹F NMR (377 MHz, D₂O) δ : –130.0 (d, ³J_{H-F} = 58.6 Hz). HPLC: 99.1% (method-A).

tert-Butyl 4-[[[(2R,5R)-6-[(R)-2-ethoxy-1-fluoro-2-oxoethoxy]-7-oxo-1,6-diazabicyclo[3.2.1]octan-2-yl]thio]methyl]-1H-imidazole-1-carboxylate (71i). To a solution of **70** (350 mg, 1.21 mmol) in CH₂Cl₂ (2 mL) were added 2-mercaptopyridine 1-oxide **4** (161 mg, 1.27 mmol) and EDC·HCl (243 mg, 1.27 mmol). The mixture was stirred for 1 h at room temperature in the dark (solution A). To a solution of **19** (1.33 g, 3.62 mmol) in CH₂Cl₂ (2 mL) was slowly added solution A at 0 °C under white light irradiation, and the mixture was stirred for 30 min. The solvent was removed before the crude was purified by flash column chromatography (10–50%, EtOAc/hexane) to give **71i** (145 mg, 26%) as a yellow oil. ¹H NMR (400 MHz, CDCl₃) δ : 8.03 (1H, s), 7.32 (1H, s), 5.88 (1H, d, ³*J*_{H-F} = 52.7 Hz), 4.69 (1H, d, *J* = 7.5 Hz), 4.37–4.28 (2H, m), 4.00–3.98 (1H, br m), 3.94 (1H, d, *J* = 11.8 Hz), 3.81 (1H, d, *J* = 14.2 Hz), 3.62 (1H, d, *J* = 14.1 Hz), 2.99 (1H, d, *J* = 11.7 Hz), 2.33–2.23 (1H, m), 2.11–2.06 (2H, m), 1.86–1.78 (1H, m), 1.62–1.61 (9H, m), 1.35 (3H, t, *J* = 7.2 Hz).

tert-Butyl 4-[[(R)-[(2R,5R)-6-[(R)-2-ethoxy-1-fluoro-2-oxoethoxy]-7-oxo-1,6-diazabicyclo[3.2.1] octan-2-yl]sulfinyl]methyl]-1H-imidazole-1-carboxylate (72i). To a solution of 71i (170 mg, 0.371 mmol) in CH₂Cl₂ (1.4 mL) was slowly added a solution of 69 wt % *m*-CPBA (93 mg, 0.371 mmol) in CH₂Cl₂ (1.2 mL) at -40 °C. After the mixture was stirred for 1 h at -40 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (70–100%, EtOAc/hexane) to give 72i (95.0 mg, 54%, dr = 7/1) as a white foam. ¹H NMR (400 MHz, CDCl₃) δ : 8.06 (1H, d, *J* = 1.0 Hz), 7.45 (1H, s), 5.87 (1H, d, ³*J*_{H-F} = 52.5 Hz), 4.40 (1H, dd, *J* = 7.2, 5.0 Hz), 4.36–4.27 (2H, m), 4.20 (1H, d, *J* = 13.7 Hz), 4.06–4.04 (1H, br m), 3.92 (1H, d, *J* = 13.8 Hz), 3.44 (1H, d, *J* = 12.2 Hz), 3.23 (1H, d, *J* = 12.2 Hz), 2.45–2.36 (1H, m), 2.29–2.11 (2H, m), 2.03–1.94 (1H, m), 1.62 (9H, s), 1.33 (3H, t, *J* = 7.2 Hz).

Sodium (2R)-2-[[(2R,5R)-2-[(R)-[(1H-imidazol-5-yl)methyl]sulfinyl]-7-oxo-1,6-diazabicyclo [3.2.1]octan-6-yl]oxy]-2-fluoroacetate (115). To a solution of 72i (90.0 mg, 0.190 mmol) in CH₂Cl₂ (1.4 mL) was added TFA (1.4 mL) at 0 °C. After the mixture was stirred for 1 h at room temperature, the solvent was removed under reduced pressure. To a solution of the product in THF/H₂O (v/v = 2/1, 2.8 mL) was added 1 N aq NaOH (914 μ L, 0.914 mmol) at 0 °C. After the mixture was stirred for 1 h at 0 °C, the reaction was quenched by dry ice, and the organic solvent was removed under reduced pressure. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–7%, MeCN/H₂O) to give **115** (39.0 mg, 50%) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ: 7.91 (1H, s), 7.33 (1H, s), 5.83 (1H, d, ${}^{3}J_{H-F}$ = 58.7 Hz), 4.44–4.37 (2H, m), 4.26–4.23 (2H, m), 3.46 (1H, d, *J* = 12.3 Hz), 3.35 (1H, d, *J* = 12.0 Hz), 2.29–2.09 (3H, m), 2.06–1.99 (1H, m). ${}^{13}C{}^{1}H$ NMR (100 MHz, D₂O) δ: 171.9 (d, ${}^{3}J_{C-F}$ = 26.4 Hz), 171.0, 139.7, 128.7, 122.4, 110.7 (d, ${}^{2}J_{C-F}$ = 241.4 Hz), 75.7, 62.5, 49.1, 48.4, 21.5, 18.8. ${}^{19}F$ NMR (377 MHz, D₂O) δ: –130.1 (d, ${}^{3}J_{H-F}$ = 58.6 Hz). HPLC: 94.7% (method-A).

S-[(2-aminothiazol-5-yl)methyl] 4-methylbenzenesulfonothioate (131). To a solution of 5-(chloromethyl)thiazol-2-amine hydrochloride (2.00 g, 10.8 mmol) in DMF (20 mL) were added potassium 4methylbenzenesulfonothioate (2.45 g, 10.8 mmol), NaI (1.62 g, 10.8 mmol), and Et₃N (1.50 mL, 10.8 mmol). After being stirred overnight, the mixture was poured into water, and the aqueous layer was extracted with EtOAc. The organic layer was washed with water and brine before being dried over MgSO₄. After the removal of solvent, the crude was triturated with CH₂Cl₂ give **131** (3.00 g, 92%) as a pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ : 7.75 (2H, d, *J* = 8.3 Hz), 7.29 (2H, d, *J* = 8.1 Hz), 6.30 (1H, s), 4.86 (2H, br s), 4.14 (2H, s), 2.43 (3H, s). MS-ESI (*m/z*): 301 [M + H]⁺.

S-[[2-[(tert-Butoxycarbonyl)amino]thiazol-5-yl]methyl] 4-methylbenzenesulfonothioate (82). To a solution of **131** (2.64 g, 8.79 mmol) in CH₂Cl₂ (35 mL) were added Boc₂O (2.04 mL, 8.79 mmol) and DMAP (107 mg, 0.88 mmol). After the mixture was stirred overnight, the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (0–50%, EtOAc/hexane) to give **82** (1.04 mg, 30%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 8.45 (1H, br s), 7.68 (2H, d, *J* = 8.1 Hz), 7.25 (2H, d, *J* = 6.6 Hz), 6.61 (1H, s), 4.27 (2H, s), 2.41 (3H, s), 1.54 (9H, s). MS-ESI (*m/z*): 401 [M + H]⁺.

Methyl (2*R*)-2-[[(2*R*,5*R*)-2-[[[2-[(tert-butoxycarbonyl)amino]thiazol-5-yl)methyl]thio]-7-oxo-1,6diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (71j). To a solution of **69** (310 mg, 0.898 mmol) in CH₂Cl₂ (3 mL) were added 2-mercaptopyridine 1-oxide **4** (114 mg, 0.898 mmol) and EDC·HCl (172 mg, 0.898 mmol). The mixture was stirred for 1 h at room temperature in the dark. To the solution was added **82** (971 mg, 2.42 mmol), and the mixture was stirred for 10 min under white light irradiation. The solvent was removed before the crude was purified by flash column chromatography (0–50%, EtOAc/hexane) to give **71j** (206 mg, 48%) as a colorless gum. ¹H NMR (400 MHz, CDCl₃) δ : 8.11 (1H, br s), 6.79 (1H, s), 5.89 (1H, d, ³*J*_{H-F} = 52.6 Hz), 4.70 (1H, d, *J* = 6.4 Hz), 3.98 (1H, d, *J* = 2.8 Hz), 3.89– 3.86 (2H, m), 3.88 (s, 3H), 3.63 (1H, d, *J* = 13.9 Hz), 3.02–2.99 (1H, m), 2.28–2.22 (1H, m), 2.11–2.06 (1H, m), 1.86–1.80 (1H, m), 1.58–1.55 (1H, m)1.53 (s, 9H). MS-ESI (*m/z*): 477 [M + H]⁺.

Methyl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[[2-[(tert-butoxycarbonyl)amino]thiazol-5-yl]methyl]sulfinyl]-7oxo-1,6-diazabicyclo[3.2.1]octan-6-yl]oxy]-2-fluoroacetate (72j). To a solution of **71j** (206 mg, 0.431 mmol) in CH₂Cl₂ (2 mL) was slowly added 69 wt % *m*-CPBA (53.9 mg, 0.216 mmol) at -40 °C. After the mixture was stirred for 1 h at -40 °C, aq NaHCO₃ and aq Ns₂S₂O₃ were added, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over Na₂SO₄, and the solvent was removed under reduced pressure. The crude was purified by flash column chromatography (0–20%, MeOH/EtOAc) to give **72j** (78.2 mg, 37%, dr = 5/1). ¹H NMR (400 MHz, CDCl₃) δ : 8.07 (1H, br s), 6.93 (1H, s), 5.89 (1H, d, ³*J*_{H-F} = 52.5 Hz), 4.54 (1H, t, *J* = 6.2 Hz), 4.20 (1H, d, *J* = 13.6 Hz), 4.06–4.03 (1H, br m), 4.01 (1H, d, *J* = 13.7 Hz), 3.87 (3H, s), 3.42 (1H, d, *J* = 12.0 Hz), 3.24 (1H, d, *J* = 12.2 Hz), 2.40–2.31 (1H, m), 2.27–2.22 (1H, m), 2.15–1.93 (2H, m), 1.54 (9H, s). MS-ESI (*m*/*z*): 493 [M + H]⁺.

Methyl (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[(2-aminothiazol-5-yl)methyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3. 2.1]octan-6-yl]oxy]-2-fluoroacetate (111). To a solution of 72j (78.2 mg, 0.159 mmol) was added 2 M solution of AlCl₃ in MeNO₂ (318 μ L, 0.636 mmol) at -30 °C. After being stirred for 1 h at -30 °C, the mixture was poured into aq NaHCO₃, and the aqueous layer was extracted with EtOAc three times. The combined organic layers were dried over MgSO₄, and the solvent was removed under reduced pressure to give **111** (41.4 mg, 66%) as a white solid. MS-ESI (m/z): 393 $[M + H]^+$.

Sodium (2*R*)-2-[[(2*R*,5*R*)-2-[(*R*)-[(2-aminothiazol-5-yl)methyl]sulfinyl]-7-oxo-1,6-diazabicyclo[3. 2.1]octan-6-yl]oxy]-2-fluoroacetate (116). To a solution of 111 (41.4 mg, 0.105 mmol) in THF/H₂O (v/v = 2/1, 1.5 mL) was added 1 N aq NaOH (105 μ L, 0.105 mmol) at 0 °C. After the mixture was stirred for 1 h at 0 °C, the reaction was quenched by dry ice, and the organic solvent was removed under reduced pressure. The aqueous solution was applied onto HP20SS resin and subjected to ODS column chromatography (0–7%, MeCN/H₂O) to give 116 (27.5 mg, 65%, dr = 3/1) as a white amorphous solid. ¹H NMR (400 MHz, D₂O) δ : 6.74 (1H, s), 5.82 (1H, d, ³J_{H-F} = 58.7 Hz), 4.48 (1H, t, J = 5.9 Hz), 4.31–4.25 (2H, m), 4.08 (1H, d, J = 14.1 Hz), 3.46 (1H, d, J = 12.3 Hz), 3.34 (1H, d, J = 12.0 Hz), 2.31–2.12 (3H, m), 2.08–1.99 (1H, m). ¹³C{¹H} NMR (100 MHz, D₂O) δ : 173.7, 171.9 (d, ³J_{C-F} = 27.1 Hz), 171.0, 140.7, 113.1, 110.7 (d, ²J_{C-F} = 240.6 Hz), 76.3, 62.5, 52.6, 48.4, 21.5, 18.8. ¹⁹F NMR (377 MHz, D₂O) δ : -130.1 (d, ³J_{H-F} = 58.6 Hz). HPLC: 97.4% (method-A).

$$\underset{O}{\overset{F}{\underset{O}}} OH \xrightarrow{CH_2N_2} \underset{Et_2O, 0 \ ^{\circ}C}{\overset{F}{\underset{O}}} \underset{O}{\overset{F}{\underset{O}}} H \xrightarrow{F} O$$

Methyl (R)-2-bromo-2-fluoroacetate (22f). To a solution of (*R*)-2-bromo-2-fluoroacetic acid^{7,8} (18.0 g, 115 mmol) in Et₂O (200 mL) was babbled diazomethane at 0 °C. After the solution turned into yellow, remaining diazomethane was removed by N₂ bubbling. The solvent was carefully removed under reduced pressure (200 torr, 20 °C) to give **22f** (24.9 g, 69.7 wt%, 89%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 6.59 (1H, d, ³*J*_{H-F} = 50.4 Hz), 3.91 (3H, s).

*Isopropyl (R)-2-bromo-2-fluoroacetate (22g).*⁸ To a solution of (*R*)-2-bromo-2-fluoroacetic acid^{7,8} (5.20 g, 25.8 mmol) in CH₂Cl₂ (52 mL) were added ⁱPrOH (19.9 mL, 258 mmol) and EDC·HCl (5.45 g, 28.4 mmol) at 0 °C. After the mixture was stirred for 30 min at 0 °C, diluted aq H₂SO₄ was added. The organic layer was separated and washed with water before being dried over MgSO₄. The solvent was carefully removed under reduced pressure (200 torr, 20 °C) to give **22g** (9.72 g, 52.6 wt%, 99%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 6.53 (1H, d, ³*J*_{H-F} = 50.7 Hz), 5.22–5.13 (1H, sep, *J* = 6.0 Hz), 1.34 (3H, d, *J* = 6.0 Hz), 1.33 (3H, d, *J* = 6.0 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 164.2 (d, ³*J*_{C-F} = 25.7 Hz), 81.1 (d, ²*J*_{C-F} = 263.4 Hz), 71.4, 21.5, 21.3. ¹⁹F NMR (377 MHz, CDCl₃) δ : -150.53 (d, ³*J*_{H-F} = 51.8 Hz).

Cyclohexyl (*R*)-2-*bromo-2-fluoroacetate* (22*h*). To a solution of (*R*)-2-bromo-2-fluoroacetic acid^{7,8} (39.0 g, 102 mmol) in CH₂Cl₂ (195 mL) were added cyclohexanol (107 mL, 1019 mmol) and EDC·HCl (21.5 g, 112 mmol) at 0 °C. After the mixture was stirred for 30 min at 0 °C, diluted aq H₂SO₄ was added. The organic layer was separated and washed with water before being dried over MgSO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0– 5%, EtOAc/hexane) to give **22h** (35.4 g, 63 wt%, 92%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃) δ : 6.55 (1H, d, ³*J*_{H-F} = 50.8 Hz), 4.97–4.91 (1H, m), 1.90–1.87 (2H, m), 1.78–1.73 (2H, m), 1.56–1.51 (2H, m), 1.45-1.27 (4H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 164.2 (d, ³*J*_{C-F} = 25.7 Hz), 81.1 (d, ²*J*_{C-F} = 263.4 Hz), 75.9, 31.1, 30.9, 25.1, 23.4, 23.3. ¹⁹F NMR (377 MHz, CDCl₃) δ : -150.34 (d, ³*J*_{H-F} = 50.4 Hz).

Ethyl (2*R*)-2-*fluoro-2-[[(2<i>R*,5*R*)-2-[(*R*)-*methylsulfinyl*]-7-*oxo-1*,6-*diazabicyclo*[3.2.1]*octan-6-yl*] *oxyJacetate* (117). To a solution of **32** (5.00 g, 11.2 mmol) in EtOH/CH₂Cl₂ (v/v = 1/2, 150 mL) wad added K₂CO₃ (1.55g, 11.2 mmol) at 0 °C. After the mixture was stirred for 3 h at 0 °C, 10% aq citric acid and brine were added, and the layers were separated. The aqueous layer was extracted with EtOAc twice, and the combined organic layers were dried over Na₂SO₄. After the solvent was removed under reduced pressure, the crude was purified by flash column chromatography (0–10%, EtOH/EtOAc) to give **117** (2.67 g, 77%) as a white solid. ¹H NMR (400 MHz, CDCl₃) & 5.88 (1H, d, ³*J*_{*H*-*F*} = 52.2 Hz), 4.38–4.26 (2H, m), 4.10 (1H, t, *J* = 6.1 Hz), 4.07–4.05 (1H, br m), 3.36 (1H, d, *J* = 12.0 Hz), 3.20 (1H, d, *J* = 12.3 Hz), 2.68 (3H, s), 2.48–2.39 (1H, m), 2.29–2.11 (2H, m), 2.03–1.94 (1H, m), 1.34 (3H, t, *J* = 7.2 Hz). ¹³C{¹H} NMR (100 MHz, CDCl₃) & 167.1, 162.8 (d, ³*J*_{*C*-*F*</sup> = 35.9 Hz), 105.2 (d, ²*J*_{*C*-*F*</sup> = 239.2 Hz), 76.8, 62.9, 60.5, 45.1, 37.1, 19.3, 15.9, 14.0. ¹⁹F NMR (377 MHz, CDCl₃) & -136.7 (d, ³*J*_{*H*-*F*} = 51.8 Hz). HPLC: 99.9% (method-B). HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₁H₁₈O₅N₂FS 309.0915; found 309.0911.}}

Isopropyl (2*R*)-2-*fluoro*-2-*[[*(2*R*,5*R*)-2-*[*(*R*)-*methylsulfinyl*]-7-*oxo*-1,6-*diazabicyclo*[3.2.1]*octan*-6*yl*]*oxy*]*acetate* (118). To a suspension of 25 (150 mg, 0.734 mmol) in DMF (1 mL) were added 52.6 wt% 22g (333 mg, 0.881 mmol) and DBU (0.133 mL, 0.881 mmol) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was directly applied onto HP20SS resin and subjected to ODS column chromatography (30–50%, MeCN/H₂O) to give 118 (159 mg, 67%) as a white solid. ¹H NMR (400 MHz, CDCl₃)

δ: 5.85 (1H, d, ${}^{3}J_{H-F}$ = 52.5 Hz), 5.19–5.10 (1H, sep, *J* = 6.3 Hz), 4.12–4.07 (2H, m), 3.37 (1H, d, *J* = 12.0 Hz), 3.19 (1H, d, *J* = 12.0 Hz), 2.68 (3H, s), 2.48–2.39 (1H, m), 2.28–2.11 (2H, m), 2.02–1.94 (1H, m), 1.33 (3H, d, *J* = 6.3 Hz), 1.30 (3H, d, *J* = 6.3 Hz). ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ: 167.0, 162.3 (d, ${}^{3}J_{C-F}$ = 35.9 Hz), 105.3 (d, ${}^{2}J_{C-F}$ = 237.7 Hz), 76.8, 71.2, 60.6, 45.1, 37.1, 21.6, 21.4, 19.3, 15.8. ${}^{19}F$ NMR (377 MHz, CDCl₃) δ: -136.5 (d, ${}^{3}J_{H-F}$ = 51.8 Hz). HPLC: >99.9% (method-B). HRMS (ESI) *m/z*: [M + H]⁺ calcd for C₁₂H₂₀O₅N₂FS 323.1071; found 323.1067.

Cyclohexyl (2*R*)-2-*fluoro-2-[[(2<i>R*,5*R*)-2-*[*(*R*)-*methylsulfinyl*]-7-*oxo-1*,6-*diazabicyclo*[3.2.1]*octan-*6-*yl*]*oxy*]*acetate* (119). To a suspension of 25 (16.0 g, 78 mmol) in DMF (112 mL) were added 92 wt% 22h (24.4 g, 94 mmol) and 2 M DBU in DMF (43.1 mL, 86 mmol) at 0 °C. After being stirred for 1 h at 0 °C, the mixture was diluted with EtOAc (160 mL) and poured into water. The aqueous layer extracted with EtOAc twice, and the combined organic layers were washed with water and brine before being dried over MgSO₄. After the solvent was removed, the crude was recrystallized form CH₂Cl₂/[/]Pr₂O to give 119 (23.5 g, 83%) as a white solid. ¹H NMR (400 MHz, CDCl₃) δ : 5.87 (1H, d, ³*J*_{*H*-*F*} = 52.2 Hz), 4.93–4.87 (1H, m), 4.12–4.07 (2H, m), 3.36 (1H, d, *J* = 12.0 Hz), 3.19 (1H, d, *J* = 12.3 Hz), 2.68 (3H, s), 2.47–2.39 (1H, m), 2.27–2.11 (2H, m), 2.02–1.89 (3H, m), 1.78–1.21 (8H, m). ¹³C{¹H} NMR (100 MHz, CDCl₃) δ : 167.0, 162.3 (d, ³*J*_{*C*-*F*} = 35.9 Hz), 105.3 (d, ²*J*_{*C*-*F*</sup> = 238.4 Hz), 76.8, 76.1, 60.6, 45.1, 37.1, 31.4, 31.2, 25.1, 23.7, 23.7, 19.3, 15.8. ¹⁹F NMR (377 MHz, CDCl₃) δ : –136.2 (d, ³*J*_{*H*-*F*} = 53.1 Hz). HPLC: >99.9% (method-B). HRMS (ESI) *m*/*z*: [M + H]⁺ calcd for C₁₅H₂₄O₅N₂FS 363.1384; found 363.1379.}

X-ray crystallographic data of compound 119

X-ray Crystallography:

The diffraction data of **119** were collected on an XtaLAB AFC10 (RCD3): quarter-chi single diffractometer. The crystal was kept at 100.0 K during data collection. Using Olex2,¹⁰ the structure was solved with the ShelXT¹¹ structure solution program using Intrinsic Phasing and refined with the ShelXL¹² refinement package using Least Squares minimisation.

Sample Preparation:

X-ray quality crystal was prepared by vapor diffusion method using methyl ethyl ketone/hexane at room temperature.

Figure S3. X-ray Structure of compound 119. Thermal ellipsoids are set at 30% probability.

Formula	$C_{15}H_{23}FN_2O_5S$
Formula weight	362.41
Temperature (K)	200
Crystal system	orthorhombic
Space group	P212121
a (Å)	5.3772 (10)
b (Å)	12.7909 (2)
c (Å)	24.8398 (4)
α (°)	90
β (°)	90
γ (°)	90
Volume (Å ³)	1708.46 (5)
Z	4
ρ (g/cm ³)	1.409
$\mu ({ m mm}^{-1})$	2.036
F(000)	768.0
Crystal size (mm ³)	$0.2 \times 0.02 \times 0.01$
R ₁	0.0316
Flack parameter	-0.004(11)
CCDC Deposition Number	2195413

 Table S2. Crystal data for 119

化合物の生物学的,物理学的評価

β-Lactamase Inhibition Assay. The inhibition of β-lactamases was determined by the hydrolysis of nitrocefin. The hydrolysis of nitrocefin was recorded as absorbance at 492 nm by Envision2013 (Perkin Elmer). The concentration of β-lactamase enzyme (KPC-2, CTX-M-15, CMY-2, and OXA-48) used was determined by the measurement of hydrolysis of nitrocefin (50 µg/mL), where the change of the absorbance was approximately 0.2 from the negative control (no enzyme). The enzyme was added to the sample solution including nitrocefin (final concentration 50 µg/mL) and an inhibitor at the volume ratio of 1:3 (final 80 µL). The absorbance was measured at 35 °C after 20 min incubation. The concentration of the inhibitor needed to reduce the hydrolysis of the substrate by 50% (IC₅₀) was calculated using XLfit (IDBS, UK).

Antibiotic Susceptibility Testing. Strains with a "SR" designation are from previous surveillance which are kept in the Shionogi collection of clinical isolates and have been characterized by multiplex PCR and sequencing analysis including whole genome sequencing. All strains with an "ATCC" designation are purchased from American Type Culture Collection (ATCC). The minimum inhibitory concentrations (MICs) were determined using the broth microdilution method in accordance with Clinical Laboratory Standards Institute (CLSI) guidelines.¹⁴ Briefly, two-fold serial dilution of test compounds were prepared and transferred to a 96-well plate including cation-adjusted Mueller Hinton broth (CAMHB). The bacterial suspension for inoculum were prepared based on optical density of 625 nm to be approximately 5×10^4 CFU/well as final inoculum size. The 96-well plates were incubated at 35 °C for 16 to 20 hours. The MIC endpoint was defined as the lowest concentration of the compound that inhibited bacterial growth as detected by the unaided eye. The MPC (minimal potentiating concentration) values were used to define of BLI. The MPC₁ as defined as the concentration of BLI that was required to reduce the CTB MIC to $\leq 1 \,\mu g/mL$. The MPC₁ values were determined using the broth microdilution method. Briefly, two-fold serial dilution of test BLIs were prepared and transferred to a 96-well plate including CAMHB with 1 µg/mL of CTB. The bacterial suspension for inoculum were prepared based on optical density of 625 nm to be approximately 5×10^4 CFU/well as final inoculum size. The 96-well plates were incubated at 35 °C for 16 to 20 hours. The MPC₁ endpoint was defined as the lowest concentration of the compound that inhibited bacterial growth as detected by the unaided eye.

PBP Inhibitory Rates Testing. Membrane fraction (2 mg/ml) of *E. coli* NIHJ JC-2 was incubated at 30 °C for 10 min with diluted **21b**, and BocillinTM FL penicillin sodium salt (final concentration was 100 µg/mL) (Life Technologies) was added and incubated at 30 °C for 30 min to label intact PBPs. Final concentrations of *N*-lauroylsarcosine sodium salt (Nacalai Tesque) and penicillin G sodium salt (Chem-Impex International) were adjusted to 1.7% (w/v) and 20 mg/mL, and incubated at 30 °C for 15 min. Incubated samples were centrifuged at 18,000g for 30 min at 8 °C. An aliquot (50 µL) of supernatant mixed with 10 µL of 6x sample buffer solution (Nacalai Tesque) and 1 µL of 2-mercaptoethanol was heated in boiled water for 3 min. Samples were subjected to a 7.5% mini-gel (Nacalai Tesque) for SDS-PAGE to separate PBPs and the gel was washed with water and scanned by LAS-3000 (Fuji Film) with Y515 cutoff filter. The fluorescence values were measured using Multi Gauge (Fuji Film) and PBP

inhibitory rates were calculated when fluorescence value of the control was considered to be 0%.

Pharmacokinetics Studies. Pharmacokinetics studies were performed in mice, rats, dogs, and monkeys. Briefly, 6-week old Jcl:ICR male mice, 8-week old Crl:CD (SD) male rats, male Marshal beagles, and female cynomolugus monkeys were used in these studies. Blood samples were collected after intravenous and oral administration at designed time and centrifuged to obtain the plasma samples. Plasma samples were stored at -20 °C until LC/MS/MS analysis.

LC/MS/MS Determination of Test Compounds. Aliquots (5–40 μ L) of each samples were transferred to a 96-well plate, mixed with 250 or 500 μ L of methanol, and centrifuged at 1,580g for 10 min at 4 °C. A portion of supernatant was injected to Shimadzu Nexera HPLC system interfaced with an API-5000 mass spectrometer (AB Sciex, Framingham, MA). Test compounds plasma concentration were determined by LC/MS/MS with electrospray ionization in the positive ion mode using an external standard method.

Pharmacokinetic Analysis. The elimination half-life $(T_{1/2})$ was estimated as $\ln 2/k_{el}$, where k_{el} is the elimination rate constant derived from the slope of the log concentration versus time profile. The area under the concentration-time curve from 0 h to the last time point (AUC) was calculated by linear trapezoidal approximation. Total clearance (CL_{tot}) was estimated as Dose/AUC.

Serum Stability. Each experiment was performed in duplicate. Pooled human, rat, mouse, dog, and monkey serum were incubated with test compound for 30 min at 37 °C, respectively. The concentration of test compounds was 5 μ mol/L. After incubation, an aliquot (20 μ L) of each sample was transferred to a 96-well plate, mixed with 120 μ L of methanol, and centrifuged at 1,580*g* for 10 min at 4 °C. The supernatant was analyzed by LC/MS/MS, and the plasma stability (%) of test compounds was calculated.

Serum Protein Binding. Serum protein binding was evaluated by ultrafiltration method. Test compounds were spiked in the serum collected from fasted mice, rats, dogs, and monkeys at 10 μ g/mL. After incubation for 5 min at 37 °C, serum samples were transferred to Centrifree (Merck KGaA, Darmstadt, Germany) and centrifuged. Initial serum samples and filtrates were analyzed by LC/MS/MS.

In Vivo Efficacy Studies. *In vivo* efficacy of CTB and prodrug **119** was evaluated in the murine urinary tract infection model against *K. pneumoniae* strains SR08667. Briefly, 5-week old ICR female mice (N = 5 per arm, CLEA Japan, Inc.) were used in this study. This animal study was approved by the Institutional Animal Care and Use Committee of Shionogi & Co., Ltd. *K. pneumoniae* SR08667 suspension was diluted with MHB to be 1.2×10^7 CFU/mL. A 0.1 mL of the diluted bacterial suspension was transure thrally inoculated (1.2×10^6 CFU/mouse) and the ure thraws tightened for 4 hours for the infection. The CTB and **119** were orally administered four times at the time points of 4, 8, 28, 32 h after the infection. The both of CTB and **119** were formulated in 0.5% methylcellulose. At 4- or 48-hour post-infection, animals were euthanized, and kidneys (2 samples/mouse) were collected and homogenized in 2.7 mL of MHB. The tissue homogenates were serially diluted and the viable cells in the samples were counted by using modified Drigalski agar.

Repeated-Dose Toxicity Study. Briefly, 6-week old Crl:CD (SD) male and female rats were used in this study. Compound **119** was orally administered for 2 weeks at a daily dosage of 600 mg/kg or 2000 mg/kg. The following items were examined; clinical observations, body weight, feed consumption, urinalysis, hematology, blood chemistry, organ weight, macropathology, and histopathology.

References

- 1) Lampilas, M.; Aszodi, J.; Rowlands, D. A.; Fromentin, C. New heterocyclic compounds, their preparation and their use as medicaments, in particular as anti-bacterial agents. US2011/0213147.
- 2) Abe, T.; Furuuchi, T.; Sakamaki, Y.; Inamura, S.; Morinaka, A. Novel β-lactamase inhibitor and method for producing same. WO2013180197.
- Pate, M. V.; Deshpande, P. K.; Bhawasar, S.; Bhagwat, S.; Jafri, M. A.; Mishra, A.; Pavase, L.; Gupta, S.; Kale, R.; Joshi, S. 1,6-diazabicyclo[3.2.1]octan-7-one derivatives and their use in the treatment of bacterial infections. WO2013030733.
- O'Donnell, G.; Poeschl, R.; Zimhony, O.; Gunaratnam, M.; Moreira, J. B. C.; Neidle, S.; Evangelopoulos, D.; Bhakta, S.; Malkinson, J. P.; Boshoff, H. I.; Lenaerts, A.; Gibbons, S. Bioactive Pyridine-*N*-oxide Disulfides from Allium stipitatum. *J. Nat. Prod.* 2009, *72*, 360–365.
- Mampuys, P.; Zhu, Y.; Vlaar, T.; Ruijter, E.; Orru, R. V. A.; Maes, B. U. W. Sustainable Three-Component Synthesis of Isothioureas from Isocyanides, Thiosulfonates, and Amines. *Angew. Chem., Int. Ed.* 2014, *53*, 12849–12854.
- Ohkanda, J.; Buckner, F. S.; Lockman, J. W.; Yokoyama, K.; Carrico, D.; Eastman, R.; Luca-Fradley, K. d.; Davies, W.; Croft, S. L.; Voorhis, W. C. V.; Gelb, M. H.; Sebti, S. M.; Hamilton, A. D. Design and Synthesis of Peptidomimetic Protein Farnesyltransferase Inhibitors as Anti-*Trypanosoma brucei* Agents. *J. Med. Chem.* 2004, *47*, 432–445.
- 7) Boussac, H.; Crassous, J.; Dutasta, J. P.; Grosvalet, L.; Thozet, A. Resolution and absolute configuration of bromofluoroacetic acid. *Tetrahedron: Asymmetry* **2002**, *13*, 975–981.
- B) Durand-Réville, T. F.; Comita-Prevoir, J.; Zhang, J.; Wu, X.; May-Dracka, T. L.; Romero, J. A. C.; Wu, F.; Chen, A.; Shapiro, A. B.; Carter, N. M.; McLeod, S. M.; Giacobbe, R. A.; Verheijen, J. C.; Lahiri, S. D.; Sacco, M. D.; Chen, Y.; O'Donnell, J. P.; Miller, A. A.; Mueller, J. P.; Tommasi, R. A. Discovery of an Orally Available Diazabicyclooctane Inhibitor (ETX0282) of Class A, C, and D Serine β-Lactamases. *J. Med. Chem.* 2020, *63*, 12511–12525.
- Simpson, L. S.; Widlanski, T. S. A Comprehensive Approach to the Synthesis of Sulfate Esters. J. Am. Chem. Soc. 2006, 128, 1605–1610.
- 10) Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. J. Appl. Cryst. **2009**, *42*, 339–341.
- 11) Sheldrick, G.M. Acta Cryst. 2015, A71, 3-8.
- 12) Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.
- 13) Guo, S-H.; Wang, M-Y.; Pan, G-F.; Zhu, X-Q.; Gao, Y-R.; Wang, Y-Q. Synthesis of Monofluoromethylthioesters from Aldehydes. *Adv. Synth. Catal.* **2018**, *360*, 1861–1869.
- 14) CLSI. (2012) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, CLSI document M07-A9 (ISBN 1-56238-784-7), Vol. 32, No. 2, Clinical and Laboratory Standards Institute, Wayne, PA, USA